论文部分内容阅读
随着激光技术的迅猛发展,激光在军事、医疗、加工等领域中的应用不断扩大,激光防护越来越受到人们的重视,现有的激光防护材料在可见光透过率、防护视角、防护波段范围存在一定不足,为探索具有宽波段、高可见光透射率及快速响应的光限幅激光防护材料,在分析了现有激光防护原理、激光防护技术和激光防护材料的基础上,比较详细地论述了非线性光学原理以及利用非线性光学原理的非线性折射、非线性散射、非线性反射、非线性吸收光限幅技术及材料种类,确定利用有机非线性材料激发态反饱和吸收方案,结合Z扫描测试以三能级系统模型,通过粒子数速率方程,利用稳态条件给出了非线性吸收以及非线性折射系数的表达式,讨论了反饱和吸收材料激发态吸收的基本理论,并简单介绍了基于激发态吸收的光限幅器件优化理论。 本论文选择了酞菁类和卟啉类化合物作为研究对象,分别合成了不同金属配位,不同烷氧基以及不同种类含有轴向取代的12种金属酞菁化合物以及四苯基卟啉和不同金属配位的三种金属卟啉类化合物。分别测试了金属酞菁化合物和卟啉化合物的元素分析、红外光谱、核磁共振氢谱等,通过对结构分析,验证了化合物的分子结构。我们将A——G七种酞菁类化合物和N——P三种卟啉类化合物分别掺入聚合物单体(MMA)中,通过浇铸成型制备出反饱和吸收化合物/PMMA复合材料样品;将H——L五种酞菁类化合物溶解在PMMA氯仿溶液中,通过提拉成膜方法制备了酞菁/PMMA复合薄膜材料样品;将枯丁苯氧基碘代酞菁铟掺杂到亚克力树脂中,通过注射成型制备出了掺杂酞菁的PMMA复合材料样品;同时我们以四叔丁基氯代酞菁铟/PMMA复合材料制备出了光限幅优化器件。 我们测试了三种烷氧基酞菁铅化合物(E、F、G)/PMMA复合材料的DSC曲线,可以看出酞菁化合物的引入能够提高复合材料的玻璃化温度,提高材料的耐热性,同时可以看到由于酞菁化合物的低聚在复合材料的DSC曲线中出现了两个玻璃化温度。 对于注射成型样品,我们进行了样品断面的SEM分析,可以看到所掺入的酞菁化合物能够均匀地分散在聚合物基质中,不存在团聚现象。 我们测试了所制备化合物和材料样品的紫外——可见光谱特性,通过对比七种烷氧基金属酞菁化合物在氯仿溶液中及聚合物样品的紫外——可见光谱,可以看到酞菁化合物具有明显的B带和Q带吸收,并且Q带吸收峰的位置会随着共轭性取代基团及重原子的引入而发生红移。在聚合物材料中,由于酞菁环的整齐排列及聚集作用,使吸收光谱变宽并向长波方向移动;卟啉化合物在400nm附近出现典型的Sorer带吸收,Q带吸收在550nm附近;酞菁薄膜材料样品紫外-可见吸收光谱B带和Q带吸收峰位置与溶液及聚合物样品类似。 我们用波长为532nm的YAG倍频调Q脉冲激光以8ns的脉冲速率测试复合材料的反饱和吸收的光限幅特性,并使用现象学的方法对叔丁烷氧基酞菁铅/PMMA复合材料和异戊烷氧基酞菁铅/PMMA复合材料的光限幅现象进行了拟合,拟合结果与实验结果基本一致。 我们对所制备的金属卟啉化合物/PMMA复合材料样品、金属酞菁化合物/PMMA复合材料样品、注射成型材料样品及光限幅优化器件材料样品进行了反饱和吸收性能的测试,可以看到金属酞菁材料反饱和吸收性质与金属酞菁的结构、掺入浓