论文部分内容阅读
本文选用五种新疆产地的柴油,用核磁共振波谱法和气相色谱-质谱联用法测定了它们的平均碳原子数和碳数分布;用两种不同的方法—熔融法和携水剂法,分别合成丙烯酸高级酯,比较其优缺点,并用正交实验和极差分析的方法确定其最佳合成工艺;针对独山子 0#柴油合成了丙烯酸十四酯-马来酸酐共聚物(AM),分别讨论了五种影响共聚物低温流动使用性能的因素,并确定出最佳合成工艺;仍然针对独山子 0#柴油,在参照前述二元共聚物合成条件的基础上,合成丙烯酸高级混合酯-马来酸酐-苯乙烯(AMS)共聚物,并从不同角度讨论了影响聚合物相对分子质量(以粘度表示)的因素;针对克拉玛依 0#柴油,设计并合成了一种新型的降凝剂 MSVA,对所选的五种柴油均达到非常满意的降凝和助滤效果。 本文第二章对所选的五种柴油的含蜡情况进行了分析。利用尿素络合法提取了五种柴油中的石蜡,用核磁共振波谱法和公式 NC=[3A(CH2)+2A(CH3)]/A(CH3)对每种柴油中石蜡的平均碳原子数进行了测定和计算。用气相色谱-质谱联用仪对每种柴油中石蜡的碳数分布进行了检测,发现五种柴油中,吐哈 0#和-10#两种柴油的石蜡碳数分布具有一定的特殊性,有两个比较明显的峰值。以上测定的数据为合成低温流动改进剂提供了重要的依据。 本文第三章对合成低温流动改进剂的一种重要单体—丙烯酸高级酯的合成方法和合成条件进行了探讨。用两种不同的方法:熔融法和携水剂法分别合成丙烯酸高级酯。实验结果发现:两种方法合成的丙烯酸高级酯均可作为聚合单体使用。熔融法避免了使用毒性较大的甲苯,反应时间为 8h,产率为 89%左右;携水剂法反应时间为 4h,产率达到 93%以上,但必须使用有毒性的甲苯,因此两种方法各有优缺点。 本文第四章针对独山子 0#柴油合成二元共聚物,丙烯酸十四酯-马来酸酐共聚物<WP=3>(AM)作为柴油低温流动改进剂。分别讨论了影响其助滤效果的五个主要因素:醇碳原子数、单体配比、引发剂的用量、聚合温度和聚合时间,并找出五种因素的最佳组合,同时讨论了加剂量对助滤效果的影响。在加剂量为 0.6%时,可分别使独山子0#、石化 0#、克拉玛依 0#、吐哈 0#、吐哈-10#柴油的冷滤点降低 5℃、4℃、4℃、0℃、1℃。 本文第五章在总结前述二元共聚物合成条件的基础上,仍然针对独山子 0#柴油合成了新型低温流动改进剂 AMS 三元共聚物,采用四因素三水平的正交实验和极差分析的方法确定了最佳合成工艺,从红外光谱可以看出三种单体发生了有效的聚合。在此条件下合成的改进剂可分别使独山子 0#、石化 0#、克拉玛依 0#、吐哈 0#、吐哈-10#柴油的冷滤点降低 8℃、5℃、7℃、3℃、4℃。同时讨论了引发剂的种类和浓度、溶剂的种类和浓度对 AMS 的粘度(相对分子量)的影响。 本文第六章针对克拉玛依 0#柴油设计合成了一种新型高效的降凝剂:MSVA 四元共聚物,以ΔCFPP 为考察目标,用正交实验和极差分析的方法确定了最佳合成条件,在红外谱图上可以看到四种单体发生的有效的聚合。在此条件下合成的聚合物按 0.5%的量依次加入独山子 0#、克拉玛依 0#、吐哈 0#、吐哈-10#柴油中ΔSP 为 15℃、21℃、13℃、14℃;ΔCFPP 为 10℃、12℃、6℃、7℃。