基于深度学习的多聚焦彩色图像融合研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:sunyanzi168168168
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近三年来,深度学习(DL)在多聚焦图像融合领域的理论研究是一个热点课题。多聚焦图像融合的目的是将部分聚焦的图像整合到一个全聚焦的单个图像中,为了达到这个目的,本文针对基于深度学习的多聚焦彩色图像融合方法展开研究,主要研究成果如下:(1)基于DCNN和QUADTREE的多聚焦图像融合算法此项工作中主要解决DCNN算法中没有对未知区域处理的问题。首先利用DCNN算法得到粗糙的聚焦概率图,通过设定两个自适应阈值对聚焦概率图进行初始分割得到三元图。其次利用QUADTREE(QT)对分割后的三元图进一步实施聚焦检测,得到细化后的初始决策图。然后,利用小区域去除策略和引导滤波将初始决策图优化为最终决策图。最后,利用像素加权平均规则将原图像与最终的决策图进行融合,得到最终的融合图像。虽然在主观观测和客观数据上均反映出融合图像质量的提高,但从决策图发现没有很好提取细节信息。(2)基于深度卷积编解码器网络的多聚焦图像融合算法此项工作中主要解决现有算法不能提取聚焦部分的细节信息问题,本文通过研究多聚焦图像的生成原理及性质,构建有效的模拟数据集,设计强大的深卷积编解码器网络(DED-Net)以及适合损失函数进行训练。使用训练好的网络对原图像进行解算,得到含细节信息的alpha值图。最后,利用像素加权平均规则将原图像与alpha值进行融合,得到最终的融合图像。虽然在客观数据上未获得很好的效果,但是主观测到决策图能很好提取细节信息,具备极大研究价值。
其他文献
目标跟踪是在视频初始帧中选定目标的前提下,在后续帧中检测到相同目标的任务。近些年来,使用深度学习的目标跟踪方法取得了较好的效果。但高维的深度特征及频繁的卷积和池化运算造成了跟踪延时,跟踪过程中目标的外观变化和完全遮挡发生模型漂移。为了解决上述问题,本文基于相关滤波跟踪算法,对深度特征进行优化;并利用上下文信息和时间信息改进上下文感知相关滤波模型,来提高目标跟踪的精准度。本文的主要研究内容如下:(1
近年来,随着机器人技术发展迅速,其中的一个分支,移动机器人的导航和避障问题同样备受关注,也有了长足的进展。分析和研究移动机器人定位和路径规划算法能够提升导航和避障的精度,有着重要的理论意义和应用价值。本文首先整理介绍了国内外学者关于定位算法,路径规划算法的研究现状;然后分析比较多种定位,地图构建,路径规划算法并确定了本文的导航避障系统方案;接着针对RBPF-SLAM算法重采样阶段粒子退化严重,多样
基因表达式编程(Gene Expression Programming-GEP)是处理符号回归(Symbolic Regression-SR)问题最常用的算法。然而它是一种没有方向和记忆的随机搜索算法。它在搜索过程中,种群个体结构很容易趋于相同,从而丧失搜索功能,并且很易于陷入局部最优。为了克服这些缺点,本文提出一种基于空间划分思想,采用上置信界方法(Upper Confidence Bound
目前,视觉复杂问答系统已经能够在CLEVR数据集上对视觉问答系统所不能回答的复杂问题进行解答。但是,目前的视觉复杂问答系统存在一些缺陷,其中主要包括,由强监督学习引起的模型过拟合、标注成本过高以及泛化能力差的问题;由模型结构缺陷引起的系统难以处理长问题的问题;由贪婪算法引起的系统陷入局部最优解的问题。针对视觉复杂问答系统存在的上述问题,本文首先分析讨论了上述问题出现的原因。随后,针对这些问题提出了
训练样本类别不均衡容易导致分类模型过度偏好,降低少数类样本识别精度。该问题的解决方法包括数据层面的过采样方法、欠采样方法及算法层面的集成学习。现有的过采样算法生成的样本具有局限性,并且忽视了类内不均衡问题,为此本文提出一种基于高斯混合模型和JS散度的过采样算法(GJ-RSMOTE)。该算法使用高斯混合模型对少数类样本聚类,并在超球体内生成新样本,最后利用JS散度控制采样数量。通过在UCI数据集和地
石油和天然气的开采需要各种昂贵的材料和复杂的设备,这些设备和生产设施均需要进行定期维护,以保证油气开采效率,降低不必要的维修和生产成本。这些维护任务包括安全保障任务、环境保护任务、生产设施常规维护管理任务,以及一些预防性、预见性的设备维修任务。目前,还没有专业的调度软件实现维修任务的人员调度和路径规划决策,仍然采用人工手动排定的方法进行任务的分配和路径的规划,调度决策存在着效率低下、人员利用率低等
随着社会经济的迅速发展,石油能源的需求越来越大,开采量逐渐上升,但是安全问题制约了油田开发力度。现阶段的违规行为识别主要依靠人工巡检,工作强度大且效率不高。同时,油田各井场的摄像头数量多、高度较高、距离较远,因此,目标的尺寸较小,检测难度大,检测结果不稳定。为了实现油田视频监控的智能化,本文进行了以下研究:(1)提出了基于设备检测的油田施工场景识别方法。使用K-means算法对设备尺寸进行聚类分析
随着传感器技术和机械制图的发展,三维模型数量呈爆炸式增长。在计算机视觉领域,研究人员将目光从平面上的图像应用转移到表征真实世界的三维模型的应用。三维形状分割是三维形状分析的基础,是计算机视觉中检测和识别物体信息的基础。对三维模型进行形状分割,确定模型中每个网格包含的语义,通过对每个语义成分更深入的分析,可以实现形状对应与匹配、模型检索等任务。对于网格的三维形状分割,早期学者从计算几何角度出发,通过
安全生产一直是石油生产及化工领域的关注话题,海洋油气开采更是如此。对于深水油气田开发,所处的为高压、强腐蚀性及复杂的海底环境,并且水下生产系统复杂,零部件众多,一旦出现故障,可能造成原油的泄露,影响安全正常生产,造成海洋污染和严重的经济损失。深海油气田开发水下生产系统的安全运行得益于水下控制系统可靠性水平的不断提高,水下控制系统作为水下油气系统的关键设施,较陆地控制系统更难控制与维护,因此对其可靠
现实生活中存在许多复杂的数据,例如:社交网络中的用户交互、产品购买和有机蛋白质之间的交互等等。可将其描述成一个由相互作用的边连接的节点构成的网络,即复杂网络。社区发现是复杂网络分析的重要技术之一,其目的是发现网络中具有内部高内聚性,但与网络的其余部分相对隔离的一组节点。可见,社区发现有助于了解构成复杂网络的性质、动态行为,从而提高网络数据的可视化水平。近年来,随着各种网络的规模急剧增长,检测大型网