论文部分内容阅读
“创新、协调、绿色、开放、共享”是“十三五”时期乃至中长期指导我国能源电力行业科学发展的新理念。在着力推进能源电力行业创新发展与绿色发展的进程中,大量亟待优化与创新的技术问题相继涌现,且随着电力系统规模的日益增长、技术要求的不断提升,这类技术问题呈现出规模化、复杂化的发展趋势。本文依托实际科研课题,以群集智能思想的应用为出发点,结合专业背景,围绕电力系统建设、电力系统运营中的两类典型复杂优化问题展开研究:大规模光伏系统复杂光照下最大功率点跟踪以及电能计量设备运维作业动态优化,抽象出一类具有大规模、多极值、变量耦合等特性的复杂优化问题,并建立基于群集智能的求解模型。在此基础上,针对不同问题的属性与特点研究基于群集智能的求解方法,并最终回归实际问题的求解与优化。具体地讲,本文主要研究内容及创新成果如下:对于具有多极值特性的复杂优化问题,由于群集智能算法易出现因个体陷入局部极值且难以摆脱而导致的“早熟”收敛现象,极大程度地限制了算法对于这类问题的求解性能。本文以粒子群算法为例,分析其“早熟”现象的形成原因,并从增强粒子个体智能属性的角度出发提出若干防“早熟”策略以及HSPSO、 HSPSO-FI算法,通过为个体引入仿人脑的智能属性以增强其摆脱局部极值点束缚的能力。仿真实验表明,通过引入仿人智能属性,粒子个体能够有效克服局部极值点的束缚,算法优化性能得以显著提升。对于具有大规模特性的优化问题,由于问题复杂度随变量维数的增加呈指数上涨,这一“维数灾难”的出现将导致常规优化算法失效。尤其当大规模优化问题同时具有变量耦合特性时,问题的求解将变得极为复杂。为拓展群集智能的应用领域,提升其对各类大规模优化问题的求解性能,本文研究并提出一类通用的多参考向量自适应协同进化(AM-CC)算法框架,并以粒子群算法为例提出AM-CCPSO算法。仿真实验表明,AM-CC框架对于具有变量可分割以及变量不可分割等特性的1000维大规模问题具有良好的求解性能。AM-CC框架的提出为群集智能应用于求解大规模问题,尤其对于具有变量耦合特性的大规模问题求解提供了一种通用、有效的解决方案。在上述理论研究的基础上,针对电力系统建设中的典型复杂优化问题展开应用研究:围绕大规模光伏系统复杂光照下的“热斑效应”与最大功率点跟踪问题,研究并提出了基于群集智能的求解方案。“热斑效应”对光伏系统局部遮阴环境下的稳定工作构成严重威胁,现有方法普遍存在系统输出功率额外损失、成本较高或难以在大规模系统中应用等缺陷。针对这一问题,本文研究了基于光伏电池控制装置与支路稳压装置的大规模光伏阵列拓扑结构,为实现单块电池板(或最小控制单元)级的最大功率点跟踪提供了硬件基础。此外,建立了以大规模优化问题为描述形式的大规模光伏系统最大功率点跟踪数学模型,并将本文理论研究部分提出的各算法应用于模型求解。仿真实验表明,通过拓扑结构、数学模型与求解算法的相互配合,大规模光伏系统各电池板(或最小控制单元)在复杂光照环境下能够稳定工作于各自理论最大功率点,使“热斑效应”得以有效解决的同时保证了系统的最大输出功率。此外,针对电力系统运营中的典型复杂优化问题展开应用研究:围绕电能计量设备运维作业动态优化问题,分析电网企业相关管理工作的实际需求,并建立基于群集智能的运维作业动态优化模型,以实现对任务点数量、实时路况、运维人员属性与数量、决策者偏好等外部条件的实时响应。在此基础上,采用本文理论研究部分提出的各算法完成对模型的求解。仿真实验表明,提出的模型与算法能够对电网企业关于运维作业的各项要求予以实时响应,实现电能计量设备运维作业的高维度实时、动态优化,提升电网企业日常运维工作管理效率。