基于遗传算法的移动机器人路径规划研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:L1010732268
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动机器人是机器人领域的一个重要发展方向,而路径规划是移动机器人系统中的一个重要内容,因为它的好坏直接影响到机器人所完成任务的质量,所以路径规划成为移动机器人领域的一个研究热点。
   本文中的移动机器人路径规划包含两方面的内容:避障路径规划和TSP路径规划问题。避障路径规划是指依据某个或某些优化准则,在其工作空间中找到一条从起始点到目标点能避开所有障碍物的一条最优路径。TSP路径规划问题是指已知几个城市之间的相互距离,现有一个推销员必须遍访这几个城市,并且每个城市只能访问一次,最后又必须返回出发城市,如何安排他对这些城市的访问次序,使其旅行路线总长度最短。
   本文首先讨论了路径规划技术的发展现状以及应用方法,也指出了本课题的研究意义和主要研究的内容。
   其次通过对遗传算法和模拟退火算法的研究,分析了各自的优缺点。并把这两个算法结合构成了遗传模拟退火算法,它兼备了很强的全局和局部搜索能力,在变量数目较大时尤其突出。把遗传模拟退火算法运用到避障路径规划当中,并采用新型的初始种群生成算法,仿真结果表明这种算法使移动机器人避障路径规划提高了收敛速度,达到了较好的规划效果。
   最后研究了运用遗传算法求解TSP路径规划问题,对基本遗传算法的求解TSP路径规划问题进行了改进。为了解决群体的多样性和收敛速度的矛盾,本文采用了依概率近邻法来生成初始种群,这种初始种群生成方法较近邻算法略差,但个体多样性水平优于近邻算法。为了在遗传算法的整体运行过程中保持种群多样性、提高收敛速度,本文将相似性、群体分级等概念引入到遗传算法中,将等级较高的个体采用启发交叉算法进行交叉,并采取杰出者记录与“父子混合”选择策略来保证算法的全局收敛性,仿真结果证明了改进算法的有效性。
其他文献
期刊
期刊
学位
期刊
期刊
学位
期刊
期刊
报纸
会议