论文部分内容阅读
碳纳米管纤维是继碳纳米管粉末和薄膜后,一种新形式的碳纳米管宏观材料,其独特的组装结构特性赋予了纤维内部丰富的界面结构,从而赋予其优异的力、电、磁、光以及热等多场耦合性质,使其成为制备新型器件研究和发展的热门材料。然而,碳纳米管纤维的研究仍存在制备技术不够成熟,制备工艺稳定性较差,缺陷多等技术瓶颈问题,使得碳纳米管的优异性能在宏观尺度上难以充分体现。随着纳米技术的发展以及功能器件微型化的需求,促使碳纳米管纤维制备技术的发展变得日益迫切。本文以碳纳米管(SWCNTs)为原料,生物大分子材料透明质酸(HA)为生物表面活性剂,基于HA的分散效应与基体结合效应,制备出形状均匀、长度可控、具有优异力、电与电化学外场响应特性的HA/SWCNT多功能复合纤维,揭示了HA增强HA/SWCNT复合纤维的电化学响应特性机制以及电化学耦合驱动机理。基于HA/SWCNT复合纤维的外场响应特性,设计了两种改性和修饰方法,有效提高了HA/SWCNT复合纤维的力学性能、机械稳定性、电化学响应特性以及电化学耦合驱动等性能。在此基础上,进一步研制了基于两种改性HA/SWCNT复合纤维材料的纳米器件。采用湿纺丝法,对碳纳米管纺丝原液分散性能以及纤维成型机制进行研究,设计了一种新的碳纳米管纤维制备体系;通过对纺丝原液分散性能、纤维电学及力学性能的研究,优化了纺丝工艺参数,实现了碳纳米管材料的宏观化和HA/SWCNT复合纤维的稳定制备。通过对HA/SWCNT复合纤维形貌、结构和组分进行研究,揭示了SWCNTs在纤维内部定向分布模型,研究了纺丝原液中SWCNTs浓度对HA/SWCNT复合纤维外场响应特性的影响。研究发现HA作为生物表面活性剂和离子导电粘合剂,有效的提高了SWCNTs的分散,促进了HA/SWCNT复合纤维力学性能、电学性能以及电化学性能的提高,制备的HA/SWCNT复合纤维导电率最高达109.89±14.55 S/cm,拉伸强度为186.37±15.19 MPa、杨氏模量为18.54±1.12 GPa以及比电容可达59.08±4.74 mF/cm2。HA/SWCNT复合纤维在施加循环电压作用下,由于双电层静电效应与量子力学效应共同作用,随着电荷的注入,HA/SWCNT复合纤维发生电化学耦合驱动响应行为。HA可以促进电荷在纤维和电解液界面的聚集,有利于电解液的浸入,为离子迁移提供通道,因此有利于HA/SWCNT复合纤维电化学响应特性以及电化学耦合驱动特性的提高。以己二胺(HMDA)为交联剂,HA/SWCNT复合纤维为原料,采用化学交联改性的方法,制备了HA/SWCNT/HMDA复合纤维材料。研究表明,化学交联改性有效解决了生物环境内HA的易降解和SWCNTs易释放问题,提高了HA/SWCNT复合纤维的耐降解性能、力学性能、稳定性、电容特性以及电化学耦合驱动行为;HA/SWCNT/HMDA复合纤维材料在低电压(±1 V)的机械载荷作用下,可在生物环境内表现出优异的电容特性以及电化学耦合驱动行为,是理想的生物医药驱动器材料。基于HA/SWCNT/HMDA复合纤维制备的SWCNT基纤维型电化学驱动器,柔韧性好、机械强度高并具有良好生物相容性,在小鼠皮下组织中植入复合纤维后,早期炎症反应在三周内可消退。以HA/SWCNT复合纤维为基底材料,聚苯胺(PANI)为增强材料,采用电化学沉积法制备了具有独特核壳结构的HA/SWCNT/PANI复合纤维柔性电极材料,并对其形貌、结构、柔韧性以及电化学性能进行研究。研究表明,由于SWCNTs和苯环之间π-π键作用以及苯胺中氨基与HA羧基的氢键作用,提高了沉积在HA/SWCNT复合纤维电极上PANI的稳定性。电化学沉积PANI后,比电容提高570%,HA/SWCNT/PANI纤维具有良好的导电性、倍率特性以及电容稳定性,经过3000次循环充放电后电容保持率仍可达88.27%。同时,HA/SWCNT/PANI复合纤维具有柔韧性高、可编织性强以及电化学稳定性好的特点,经过100次循环弯折试验后,电容保持率达到86%以上,在编织后复合纤维表面的PANI壳层结构完整。采用HA/SWCNT/PANI复合纤维作正极材料,碳纳米管薄膜(CMC/Buckypaper)作负极材料,H2SO4/PVA凝胶作凝胶电解质,构建了纤维型非对称结构的超级电容器。所构建的超级电容器的稳定工作电压窗口从1 V提高到了2 V,其能量密度和功率密度分别为1.09 mW/cm2和12.55μwh/cm2。