过渡金属化合物/碳基复合电极材料的制备及其超级电容特性研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:c_zhang08
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超级电容器作为新型储能器件具有内阻低,电流效率高以及充电速率快等特点。但其较低的能量密度限制了超级电容器的应用范围。众所周知,电极材料的选择关系着超级电容器的性能特征。过渡金属化合物由于理论比电容较高而受到关注,但其固有电导率低和体积膨胀大成为制约其应用的关键。本文从探讨如何合成性能优异的复合材料以及扩宽工作电压两方面出发,优化电极材料制备工艺技术,制备性能更优良的超级电容器。论文的主要研究工作如下:(1)通过简易水热反应和低温退火处理成功合成硫化镍/活化碳纳米管(Ni S/ACNTs)复合材料,并在不同摩尔浓度KOH电解液中研究了Ni S/ACNTs复合电极的电化学性能。研究发现ACNTs作为Ni S沉积的良好导电载体,有效地缓解了Ni S纳米粒子的团聚,有利于电化学性能的改善。由于电池型材料和双电层电极材料之间的协同效应,Ni S/ACNTs电极在8.0 A g-1的电流密度下,比电容高达1068 F g-1。组装的Ni S/ACNTs//AC ASCs在6.8 k W kg-1的功率密度下,能量密度可达13.3 Wh kg-1。(2)通过简单的一步水热法和煅烧法相结合,在片状石墨烯上生长了混合相结构的Ni S/Mo S2纳米粒子,获得了Ni S/Mo S2/GR复合材料。混合相结构的Ni S/Mo S2中Ni、S直接形成Ni-S配位键,提供了足够的活性位点,有助于性能的提升。基于纳米结构和复合相结构的优势,Ni S/Mo S2/GR电极在1.0 A g-1的电流密度下,具有1028 F g-1的高比电容。此外,以Ni S/Mo S2/GR复合材料为阴极,AC为阳极,制备的Ni S/Mo S2/GR//AC非对称器件具有20.7 Wh kg-1的高能量密度和良好的循环性能。(3)以生物质菱角为碳源,经高温碳化和KOH活化制备出生物质衍生的多孔碳(BPC),并根据不同的镍钴摩尔比,通过简单的溶剂热反应合成了Ni Co-LDHs/BPC复合材料。发现BPC具有较高的比表面积(SSA)和良好的导电性,是直接沉积均匀Ni Co-LDHs材料的理想载体材料。由于Ni Co-LDHs和BPC之间的协同作用,所制备的Ni Co-LDHs-1/BPC电极在1 A g-1的电流密度下具有2047 F g-1的高比电容。此外,Ni Co-LDHs-1/BPC//BPC/PPy ASCs在1 A g-1时可提供139 F g-1的高比电容和49 Wh kg-1的高能量密度。
其他文献
绘本作为新兴的艺术形式,在我国的发展不过数十载,但其发展趋势迅猛,无论是质量还是数量都有了较大的进步。该文梳理了我国绘本的起源,探讨了绘本的概念,介绍了目前国内认可度较高的绘本概念,以及其他学者从不同角度探讨的绘本概念,探析了现代意义上我国绘本的发展历程。
近年来,非富勒烯受体材料成为有机太阳能电池(OSCs)领域的研究热点。目前,基于有机小分子类非富勒烯受体材料的OSCs的能量转换效率(PCE)已经超过了18%。高效的有机小分子受体(SMAs)材料的化学结构一般为A-D-A或A-π-D-π-A型,中心D单元通常由多环稠合芳烃构成,两端A单元一般为吸电子单元,π-共轭桥常用富电子芳杂环。末端A和π-共轭桥对SMAs的分子结构、光电性质和器件的光伏性能
层状LiMnO2作为锂离子电池正极材料具有286 mAh/g的高理论比容量,但充放电过程中,高自旋Mn3+的Jahn-Teller效应破坏晶体结构的稳定,导致循环性能较差;且初始库伦效率较低,使该材料未能在锂离子电池中实现商业化应用。为克服这些缺点,对层状o-LiMnO2进行元素掺杂改性研究。本文比较了三种方法制备的层状o-LiMnO2正极材料的电化学性能,并对电化学性能最佳的样品分别进行了氟离子
从简单易得的原料出发合成复杂分子前体一直备受科学家的关注。硝基芳烃是一种廉价、稳定和易于功能化的含氮原料,硝基芳烃的化学选择性还原脱氧是一类重要的化学反应,常用于合成含氮化合物,如N-羟基苯胺和苯胺。大部分脱氧试剂是一些金属还原剂,比如铁、锌、用酸处理过的锡粉和贵金属催化剂(Raney Ni,Pd/C,Rh/C)等。然而,这些高反应活性的还原剂使得有机骨架的官能团耐受性降低。其他脱氧试剂包括主族化
苊醌二甲酰亚胺(ANQNI)是一类应用相当广泛的缺电子构建单元,它具有优异的化学活性和高的电子亲和势。目前,已经有许多ANQNI衍生物被用于构建高性能的N-型有机电子传输材料,并在有机场效应晶体管和非富勒烯太阳能电池器件中展现出优异的器件性能。本论文基于ANQNI单元,设计合成了具有“受体(A)-给体(D)-受体(A)型”和“A-A型”的两类含苊醌二甲酰亚胺单元的有机电子传输材料,并系统地研究了材
针对全球性致死性类疾病之一的恶性肿瘤,单纯的药物治疗极易引发毒副作用和耐药性。药物递送体系可以很好的克服单纯药物治疗的不足。作为亲水性链段,聚乙二醇(PEG)经常被应用于改善药物的疏水性和提高药物载体在人体内的循环时间。PEG修饰可掩蔽电荷并在载体表面包裹形成水膜层,由此PEG修饰可延长载体在血液中的循环时间并有效降低药物对正常组织和细胞的毒副作用,使载药体系达到类似“隐身”的效果。但是,PEG修
腈在天然产品,药物和农用化学品中是一种普遍存在的结构单元。在有机合成过程中,氰基是一种很重要的官能团前体,可以转化为其它有用官能团,如:胺、酰胺、醛、脒、酮、羧酸。因此,研究氰基官能团的引入方法具有重要意义,文献已经报道了通过采用不同的氰基来源将氰基引入有机化合物的方法。在已有的报道中,脂肪族腈类化合物主要是通过不饱和烃与HCN或金属氰化物发生氰化反应的方式制备,但是这些反应通常需要使用昂贵的Ni
通过烯烃的双官能团化反应,能够经过一步反应,同时引入两个新的原子或者基团(包括碳原子和杂原子)到烯烃C=C键的两端,一次构筑两个新的化学键,不但可以迅速增加产物分子的多样性,而且能够减少合成步骤,提高合成效率,减少金属试剂的用量;近年来这一领域得到了迅速发展,成为当前有机合成化学研究的热点和前沿。但是从单一烯烃的双官能化反应到两种不同烯烃的双重双官能化反应的反应报道甚少,本论文结合烯烃的双官能团化
聚电解质复合物(PEC,polyelectrolyte complex)是由阳离子聚电解质和阴离子聚电解质通过静电相互作用而结合形成的目前,许多先进的研究工作正在聚电解质复合物领域展开,这些复合物往往结合了两种不同聚电解质的性质而又不失去其特性。此前,人们对α-螺旋聚多肽组成的聚电解质复合物结构-性质的研究尚不多见。故此我们制备了由α-螺旋阳离子聚多肽(PPBLG-DMS-I)和β-羧甲基葡聚糖钠
二月二晴,黑霜煞一层;二月二下,庄农搭一架;二月二阴,麦子起身齐崩崩。——民谚关于这些节气的民谚,老人们是熟稔于心的。一些祖祖辈辈留下的口诀,在心里,念叨久了,像珠子,就打磨得温润光滑了。这一年的二月二,天晴。田野萧杀,村庄瑟缩。黑霜,落了一层。真是黑霜,如薄刃,
期刊