论文部分内容阅读
随着现代科学技术的发展,对材料性能的要求越来越高,在航空航天、核反应堆等领域,高强、高硬以及具有良好的高温力学性能的材料越来越被人们所重视,金属材料的高温性能难以满足人们需求,特种陶瓷进入人们的视线。而陶瓷材料除了具有硬度高的特性外,还具有优良的高温性能,因此逐渐在一些高温领域受到人们的重视。氮化硅是陶瓷材料中的优秀代表,因其良好的高温力学性能、优异的化学稳定性以及很好的耐腐蚀性能,引起了人们的广泛关注。众所周知,陶瓷材料虽然耐高温、耐磨损和耐化学腐蚀等一系列优良的性能,但是由于其致命的弱点——脆性,而限制了其优良性能的发挥,因此也限制了它的应用。为此,陶瓷材料的韧化便成为了近年来陶瓷材料的核心课题。到目前为止,已探讨出若干种陶瓷韧化的途径,并已取得了显著的效果。陶瓷的韧化可分为两类:一类是自增韧陶瓷,它是由烧结或热处理等工艺使其微观结构内部自生出增韧相(组分)。另一类是在试样制备中加入第二相组元,以达到增韧的目的。本研究以氧化铝和氧化钇为烧结助剂,采用液相烧结的方法,并通过力学性能测试、电子显微分析等一系列手法,研究了自增韧、第二相粒子增韧、相变增韧以及混合增韧等方面对氮化硅复合陶瓷材料的影响,以期提高氮化硅复合陶瓷材料的性能,从显微结构上对其进行调控,从而达到氮化硅材料的使用条件。本文主要分为两大部分:氮化硅复合陶瓷材料的制备以及性能的检测。主要研究结果如下:1.氮化硅复合陶瓷在烧结过程中,应该埋粉烧结,以免高温时,氮化硅发生分解而变成硅单质。2.在自增韧陶瓷的力学性能研究中,加入棒状β-Si3N4有利于长柱状晶粒的形成和长大,进而调控材料的显微结构,改善氮化硅复合陶瓷的强度和韧性。并且,随着p-Si3N4含量的增加,Si3N4复合陶瓷材料显微组织逐渐均匀化,致密度和力学性能均先增加后降低,当p-Si3N4含量达到40%时,陶瓷致密度和力学性能同时达到最大(此时致密度为93%,横向断裂强度为583.4MPa,断裂韧性为5.42MPa.m.1/2)。3.以MoSi2颗粒作为第二相材料对氮化硅材料进行增韧,结果显示:随着MoSi2含量的增加,氮化硅材料的致密度和抗弯强度同时减小,说明MoSi2并不能对氮化硅材料进行增韧。4以SiC颗粒作为增强相,研究了第二相粒子增韧对Si3N4复合陶瓷力学性能和显微结构的影响。结果显示:随着SiC含量的增加,Si3N4复合陶瓷的相对密度和横向断裂强度同时下降。当SiC含量为0时,Si3N4复合陶瓷的相对密度和横向断裂强度为最大值。说明,SiC相对Si3N4而言,是难烧结相,SiC的加入对复合材料的烧结起阻碍作用。5以ZrO2颗粒作为增强相,研究了ZrO2含量对氮化硅复合陶瓷性能的影响。结果表明:随着氧化锆含量的增加,氮化硅复合陶瓷致密度增加;横向断裂强度和断裂韧性先增加后减小,当ZrO2含量达到10%时,Si3N4的横向断裂强度和断裂韧性同时达到最大值,分别为362MP和7.0MPa.m1/2.断口形貌的显微结构观察表明,韧性的提高源于氧化锆应力诱导相变增韧。6.混合系列中,同时以β-Si3N4和ZrO2作为增强相,以期提高Si3N4复合陶瓷的性能。结果显示:混合系列复合陶瓷的致密度和力学性能均为最小值,并且出现β-Si3N4晶粒的异常生长,与预期的结果不符。