【摘 要】
:
近年来,锌离子电池以其成本低、安全性高、生态友好等优点在储能领域展现出了巨大的发展潜力。在众多电极材料中,钒基材料,尤其是钒氧化物,具有开放式的框架结构,可容纳大量的Zn2+离子进行能量存储。虽然二价Zn2+可通过多电子转移反应提供较高的能量密度和比容量,但Zn2+离子电荷密度高、离子半径较大,会与主体材料产生强静电引力,加速主体材料晶格结构的弯曲振动,同时引起电极材料严重的晶格变形,导致主体材料
论文部分内容阅读
近年来,锌离子电池以其成本低、安全性高、生态友好等优点在储能领域展现出了巨大的发展潜力。在众多电极材料中,钒基材料,尤其是钒氧化物,具有开放式的框架结构,可容纳大量的Zn2+离子进行能量存储。虽然二价Zn2+可通过多电子转移反应提供较高的能量密度和比容量,但Zn2+离子电荷密度高、离子半径较大,会与主体材料产生强静电引力,加速主体材料晶格结构的弯曲振动,同时引起电极材料严重的晶格变形,导致主体材料结构崩塌。本论文以提高钒基化合物材料的倍率性能、循环稳定性和容量为目的,通过多种手段,包括优化电极微观形貌以及电极集成模式,利用支柱效应稳定结构,控制优化材料生长取向等手段,提升电池整体性能。以商用V2O5微米块粉末为研究主体,采用真空抽滤法,制备具有发达导电网络的无粘结剂三维柔性电极,进而构造柔性锌离子电池并对其放电容量进行了考察。提出“不使用含强极性原子粘结剂”的自支撑类电极可以提升电极在大电流密度下的放电容量。同时优化V2O5电极材料的纳米形貌,可以获得容量为402mAh·g-1的正极材料(电流密度0.5A·g-1时)。针对V2O5材料层间距狭窄,结构不稳定,容量衰退严重等问题,采用向钒基材料中引入低摩尔质量客体离子作为支柱的策略,借此来延缓由于多价离子的反复嵌入而导致结构崩塌的现象。同时,引入的小分子基团支柱极大增加材料层间距,提供更多可容纳锌离子的空间,从而提高材料的综合电化学性能。此外,通过高温煅烧法,制备了高度(001)取向的V2O5材料。实现Zn2+离子在主体材料中的高速迁移,提升了材料的倍率性能。针对高电荷密度Zn2+与V2O5材料VO层静电吸引力较大,导致Zn2+在晶格中迁移缓慢、甚至无法脱嵌、造成不断积累的问题,于是提出制备钒硫化物的策略。通过溶剂热法向VS2中引入硫缺陷,并从实验及理论分析两个角度,证实此方法有利于锌离子在材料表面的锚定以及在主体材料层间的迁移。同时,针对目前V2O5材料放电平台低,循环稳定性较差的难题,开发了新型钒基材料Mn2V2O7。将Mn2V2O7用于锌离子电池正极材料,详细研究了电极性能,提出了可能的锌离子存储机制。该材料放电平台高于V2O5,且循环性能优异,是一种极具潜力的正极材料。
其他文献
近年来,深度学习模型由于其突出的学习能力已被广泛应用于诸多智能领域。然而,随着智能化技术革命的不断拓展,深度学习模型在复杂场景下的智能应用面临着两个主要挑战:(1)深度模型泛化性差。特定任务训练的深度学习模型无法有效应对终端用户产生的复杂多变场景和分布差异较大的测试样本,直接导致模型的输出性能下降;(2)深度模型规模大、效率低。由于实际应用场景下计算设备的存储和计算能力是有限的,这与深度学习模型框
随着航空、航天以及核电等领域的快速发展,对大型航天器、飞机以及核设施等设备的日常维护维修工作需求日益突出。但由于狭窄的工作空间和极高低温、高辐射等恶劣环境,该项工作开展显得异常困难。鉴于绳驱连续型机器人具有体型纤细、臂型连续、机电分离等特点以及超强的灵巧运动和环境适应能力,在此类极限环境下应用具有卓越的潜力。然而,要将绳驱连续型机器人在上述领域中进行实际应用,还需要解决其目前存在的结构刚度低、模型
窄间隙焊接技术采用深窄坡口形式代替传统大角度坡口,填充面积仅为常规方法的1/4-1/2,极大提高焊缝填充效率并改善焊后组织性能。其中,窄间隙激光焊接具有热源能量集中、微角度坡口形式、高速焊接等优势,在厚壁构件焊接领域具有广泛的应用前景。针对现有窄间隙激光焊接方法存在的焊缝侧壁熔合不良、气孔、组织性能均匀性差等问题,从焊接熔池调控技术出发,提出了电磁辅助窄间隙激光焊接新技术,利用恒定磁场和交变电流,
高分辨率逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像技术因具备生成非合作运动目标二维高分辨率图像的能力而被广泛应用于军事和民用领域。但是二维ISAR成像存在一些固有缺陷。首先,ISAR图像无法提供目标除距离和多普勒维以外的第三维信息。其次,ISAR图像的方位维尺寸仅反映了散射点的多普勒分布,因此无法从ISAR图像中直观获取目标的实际横向尺寸。此外
随着对地遥感任务越来越复杂,航天器在一个轨道周期需要对多个目标进行凝视观测。同时,航天器的机动能力不断提升,从非敏捷航天器发展为敏捷航天器,具备了三轴姿态快速机动能力。如何充分利用航天器的姿态机动能力,实现对更多目标的观测,对于提升对地观测效率至关重要,是未来遥感卫星发展的重要方向。另一方面,航天器携带燃料有限,提高航天器的姿态机动效率,以较低的能量消耗完成姿态转移,是延长航天器在轨运行寿命的重要
相较于传统由旋转电机和机械传动部件构成的直线运动装置,永磁直线同步电机(Permanent Magnet Linear Synchronous Motor,PMLSM)更易获得高推力、高速度、高动态响应和高精度等性能,在精密直线运动场合具有广泛的应用前景。然而由于初级铁芯纵向开断,PMLSM存在特有的纵向端部效应。纵向端部效应一方面与齿槽效应耦合作用,导致电机气隙磁场产生较大畸变,另一方面导致电机
近年来,助推-滑翔飞行器研究逐渐成熟,世界航天强国开展了大量相关试验,部分国家的助推-滑翔飞行器已进入战斗值班状态。不同于运动形式固定的弹道式目标,助推-滑翔飞行器具有飞行阶段多、机动能力强、机动形式多变的特点,其强突防能力为现有导弹防御系统造成极大挑战,发展助推-滑翔飞行器拦截相关技术刻不容缓,对保护我国国家安全及人民生命财产安全具有重要的战略意义。助推-滑翔飞行器轨迹跟踪技术为整个拦截过程提供
总有机卤(TOX)是水中所有卤代有机物的总和,因其可方便评价水中消毒副产物(DBPs)的含量,已成为水中污染物处理和监控的一个重要指标。但现有TOX分析方法主要通过活性炭吸附分离有机卤,不同活性炭吸附能力存在差别,且因吸附分离过程存在相变而对有机卤影响较大,显著影响了分析的稳定性和准确性,限制了TOX分析方法的常规应用。基于此,本研究提出建立一种电渗析及紫外联用的预处理技术,同离子色谱配合使用可准
染料敏化太阳电池(DSSC),是一种潜在的、低成本光伏技术,可将太阳光转换为洁净的电能。DSSC所具有的调色板和透明度等优质特性,能同步提供日光与电能,可被广泛运用于建筑集成光伏(BIPV)。然而,基于钴基电解质的高效DSSC的稳定性限制了DSSC的大规模生产应用。光敏染料作为DSSC器件的核心组成部分,控制器件的光吸收和界面电荷复合,对器件的稳定性起着决定性作用。围绕这一主题,本文将从多角度就基
金属镁具有体积能量密度高、沉积过程无枝晶、成本低廉等优点,以金属镁为负极的可充镁基电池有望成为新一代廉价高效储能电池体系。但二价镁离子的离子半径较小,具有较高的极化强度,导致镁离子在电极材料内表现出迟缓的电化学反应动力学,限制了镁离子电池的发展。镁锂混合离子电池是以储锂材料为正极,镁金属为负极,镁锂双盐混合溶液为电解液的新型电池体系。该电池体系具备镁基电池优势的同时,解决了储镁材料动力学迟缓的问题