变长稀疏码的组合特性及其完全化

来源 :杭州师范大学 | 被引量 : 0次 | 上传用户:hhj9290
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
极大码和完全码是变长码理论(自由么半群理论)中的中心角色,而与此相关的码的完全化问题[l]--“把一个码嵌入到具有相同性质的完全码中”是码论中的经典问题,至今为止仍是一个有待进一步研究的公开问题,本文在L.Zhang[l3],Jean Ner-aud,Carla Selmi等的研究基础上,针对上述问题作了一些研究,讨论了一个甚稀疏码次为n的等价刻画,并给出了n次甚稀疏前缀码的完全化构造方法.同时研究了子幺半群MС=A*中具有有限编译延迟稀疏码的弱完全化问题,得到了一些新的结果. 第一章介绍变长码及自动机的一些相关基础理沦 第二章讨论了n次甚稀疏码的组合特性,给出了一个甚稀疏码次为n的等价刻画. 第三章针对“码的完全化”这一经典问题,引入码的拟复合的概念,并将码的复合的性质推广到码的拟复合上,同时利用拟复合码的完全性,给出了n次甚稀疏前缀码的完全化构造方法,证明了任一次为n甚稀疏前缀码都包含在一个次为n的甚稀疏完全前缀码中,从而解决了一类特殊前缀码的完全化问题该完全化方法把[13]的结论推广到次为n的情形. 第四章针对最新提出的码的“局部完全化”问题,在JeanNeraud,CarlaSelmi等所做研究的基础上,结合第三章中拟复合码的性质,利用前缀码的弱M-完全性及具有有限编译延迟码的完全化,进一步得到了可分解的有限编译延迟稀疏码在子幺半群MС=A*中的弱完全化构造方法.
其他文献
最优化理论和方法的出现可以追溯到十分古老的极值问题,然而,它成为一门独立的学科还是在上世纪40年代末.Dantzing在1947年提出求解一般线性规划问题的单纯形算法之后,随着工业革
设h是单位圆周S上的一个拟对称同胚,它决定了一个有界线性算子B,这个拉回算子将实值调和Dirichlet空间D(△)映到它自身.通常意义下的调和共轭算子A确定了D(△)上的一个复结构. A=
本文对国内航空客运市场竞争策略进行了博弈分析。文章对航班计划中航线网络,航班频次,机型选择等的决策问题进行理论分析.内容包括以下几个方面:首先,采用经典的预测方法对旅客需
灰色系统理论以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行规律的正
本文主要运用扩展的tanh法、推广的(w/g)展开法、经典李群法、非局域对称方法研究了几类非线性发展方程(组),如广义(2+1)维高阶水波方程、(2+1)维破裂孤子方程组、广义Camass
随着我国经济的不断发展,在经历了近二十年的发展,房地产企业从最初的平均利润时期再到后来的暴利时期,最终重回平均利润时代。再这样的市场环境下,房地产企业开始重视成本控
性传染病的广泛蔓延,已经严重危害到人类的生命安全。由于我国社会文化对同性性行为的排斥,使得男-男性接触人群成为了性传染病传播的隐性人群,严重阻碍了性传染病的预防与控制
本文主要研究了自治动力系统、非自治动力系统以及随机动力系统中,全局吸引子的存在性的几种刻划,以及这几种刻划之间的等价性的直接证明.主要内容如下: 第一章是引言部分,大致