论文部分内容阅读
细胞在生长过程中伴随着各种行为。其中,细胞粘附是研究其他细胞行为的基础,细胞只有首先与材料粘附,才能进行其他迁移、分化、增殖等行为。细胞外基质(ECM)由大量纳米尺度的纤维类结构组成,具有强烈的细胞行为诱导作用。近年来,研究者发现三维微纳米基底可以模拟细胞外基质,且对细胞有很强的“接触引导”作用,它允许细胞沿纳米结构的方向产生定向行为,因此可用于研究细胞粘附期间的定向行为。然而,目前研究各种三维结构上细胞行为的方法仍以光学方法为主,此类方法依赖于终点检测,不能及时反馈动态信息。细胞交流阻抗技术是一种能够实时、原位监测细胞行为的方法,在细胞无标记、无损伤的状态下能获得细胞生长时重要的动态信息,具有一定的应用前景。在多细胞生物体内,细胞相互之间的交流也是一种重要的行为,通过细胞间信息交流,生物体保证了组织内不同类型细胞间的相互协调。外泌体是由细胞分泌的一种纳米囊泡,其含有各种活性成分,例如DNA,RNA和源自母细胞的蛋白质,并且是重要的细胞信号通信工具。近年来,外泌体被认为参与各种疾病的发生和发展,特别是与肿瘤的发生和发展有关,且能够影响癌症患者的治疗效果,通过分析外泌体可以直接获得癌细胞的基本信息。乳腺癌是威胁女性健康的主要疾病之一。研究人员发现癌细胞释放的外泌体数目通常高于正常细胞的外泌体,因此认为其可以作为液体活检的标志物。目前,用于癌症早期诊断的外泌体中常用的分子标志物主要包括蛋白质和核酸。电化学发光分析技术具有灵敏度高、可控性好、检测速度快的优点,已成为分析检测领域的热门技术。利用电化学发光分析技术检测外泌体为外泌体表面蛋白表达和生理功能的研究提供了有力的工具。本论文利用纳米压印技术制备了纳米沟槽基底以模拟细胞外基质,构建了基于细胞交流阻抗技术的电化学传感器,分析了人真皮成纤维细胞(HFF)和人永生化表皮细胞(HaCaT)在纳米沟槽上的粘附与铺展行为。此外,合成Ru(bpy)32+-SiO2纳米颗粒,并通过结合核酸适配体构建三明治夹心型电化学发光传感器,在定量分析MCF-7乳腺癌细胞以测试传感器的性能后,该传感器用于定量分析乳腺癌细胞MCF-7来源的外泌体。本论文一共包括四章内容,具体如下:第一章绪论本章首先介绍了三维微纳米结构的分类和不同表面结构对细胞行为的影响,以及细胞交流阻抗技术的提出和其在细胞行为研究中的应用。其次,本章介绍了外泌体的形成、分泌与生物学功能,重点介绍了目前已有的外泌体分离与定量分析技术。其中,超速离心法为本论文分离外泌体所采用的方法,电化学发光技术为定量方法。接下来,本章描述乳腺癌细胞和外泌体之间的关联以及乳腺癌的早期诊断。在该章的最后,提出了本论文的研究目的和意义。第二章交流阻抗传感技术实时监测纳米沟槽上皮肤细胞的定向行为在本章中,纳米沟槽通过纳米压印技术制备,以模拟细胞外基质,分析了人真皮成纤维细胞(HFF)和人永生化表皮细胞(HaCaT)在纳米沟槽上的粘附、铺展和定向行为,并利用交流阻抗技术监测两种细胞在纳米沟槽上的粘附和铺展行为。结果表明,HFF细胞首先在纳米沟槽上定向排列,然后胞体延长;HaCaT细胞没有定向行为,并且它们的粘附和铺展被延迟。并且,纳米沟槽上HFF细胞产生的交流阻抗信号与比对细胞的百分比之间存在着良好的线性关系;而HaCaT细胞在粘附过程中的交流阻抗信号比铺展过程中的交流阻抗信号更大。第三章基于Ru(bpy)32+-SiO2 NPs的电化学发光适配体传感器检测MCF-7细胞本章使用来自MCF-7细胞上两种不同蛋白质的核酸适配体构建三明治电化学发光适配体传感器,通过反相微乳法合成SiO2包裹的Ru(bpy)32+纳米粒子作为信号分子并放大Ru(bpy)32+的信号。该传感器定量MCF-7细胞,在3.63×104-3.63×106个/mL的范围内线性良好,检测限为4000个/mL。该传感器制备过程简单,具有良好的选择性,有望应用于多种不同的生物体系。第四章基于Ru(bpy)32+-SiO2 NPs的电化学发光适配体传感器特异性检测乳腺癌外泌体本章构建了一种基于Ru(bpy)32+-SiO2 NPs的电化学发光适配体传感器,外泌体通过MCF-7乳腺癌细胞外泌体表面上的MUC1蛋白来特异性定量。该实验利用MCF-7细胞外泌体上特异性蛋白CD63和MUC1对应的aptamer设计了三明治夹心结构,并制备了核壳结构的Ru(bpy)32+-SiO2 NPs来放大发光信号。结果该传感器分析外泌体具有较宽的检测范围,为3.3×102-1.6×108个/μL,以及低至280个/μL的检测限。该传感器可灵活用于不同乳腺癌外泌体的检测,且灵敏度高,重现性好,为临床诊断早期乳腺癌提供了新的思路。