论文部分内容阅读
对生产作业调度进行优化可以提高企业生产资源的利用率和企业的生产效率,有效的调度算法是生产调度领域的重要研究方向。作为一种新的进化类仿生算法,粒子群优化方法目前主要应用于求解连续空间域的优化问题。调度问题是一类求解比较困难的典型组合优化问题,本文则把粒子群算法与遗传算法相结合组成协同优化算法应用到调度问题中,提高了以总装时间最小为优化目标的多品种混合计划调度系统的优化能力。目前我国在多品种混合装配线计划调度方面的研究上存在很多不足,系统编排的生产作业调度计划效率低下。因此本文考虑实际的需求和针对以往系统的不足,对多品种混合装配线进行了研究和相应系统的改进,主要工作如下:1.针对以往研究模型的不足,并且为了缩短产品装配周期,准时交货,本文提出以任务总装时间最小为目标的作业分配与产品排序同时优化的模型,在模型约束中充分考虑总装过程实际情况中多约束(包括作业优先关系、物料齐备、工位数目、固定资源、流动资源、人员工种等约束)。2.粒子群算法速度公式中的参数对其搜索能力影响很大,因此本文将混沌优化技术应用到其速度公式参数的优化中。本文将改进后的粒子群算法对计划调度的多个典型例子进行优化最终都能得到最优结果,说明引入混沌技术后的粒子群算法提高了其全局收敛性,最大可能地找到全局最优解。3.本文针对以往算法的不足,提出了基于PSO的产品排序和基于GA的作业分配的PSO协同优化算法,PSO协同优化算法通过对实际算例优化总装时间得到的最小总装时间只有基于GA的作业分配和产品排序协同优化的算法得到的最小总装时间的50%~80%,这说明PSO协同优化算法极大的提高了计划调度系统的性能。4.本文针对目前市场上产品更新换代迅速的情况,建立了紧急任务插入情况下的计划调度系统模型,并在多品种混合装配线计划调度系统的改进过程中开发了二次混流计算模块。