航天服下肢关节系统结构分析与优化

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:liguang1233000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
根据我国载人航天任务的规划,我国将在未来开展星表探测,这对现有航天服的性能,特别是下肢系统关节的灵活性和舒适性提出了更高的要求。目前的研究还缺乏对人体着服状态下的下肢关节性能的分析、关节结构的优化以及对低重力环境下的人体着服步态行走过程的理论分析。本文对航天服波纹式的髋关节和平褶式的膝关节进行了结构分析与优化设计,对地表和低重力环境下的航天服下肢系统步态行走过程进行了仿真,分析了行走过程中下肢关节的阻力矩变化。建立了考虑人服接触、腔内气压变化和限制带结构的波纹式髋关节有限元模型,并对无人条件下的关节阻力矩仿真结果进行了试验验证,对有人和无人状态下的关节阻力矩进行了对比分析,研究得到了波纹式关节阻力矩的主要来源,建立了波纹式髋关节的参数化模型,进行了关节阻力矩的影响因素研究,并在代理模型的基础上对波纹式关节结构进行了优化,得到了最优的结构参数。建立了由三层重叠褶片结构构成的平褶式膝关节有限元模型,模型包含了人服接触和腔内气压变化因素,对有人和无人状态下的关节阻力矩进行了对比分析,发现了平褶式关节阻力矩特有的变化特点,并分析了关节阻力矩的来源。建立了平褶式膝关节的参数化模型,通过直接优化的方法研究得到了最优的平褶结构形式。建立了人体下肢模型和航天服下肢系统模型,进行人服耦合仿真分析,对地球、火星和月球三种重力环境下人体着服步态行走过程进行了仿真模拟,得到了髋膝踝三种关节的关节阻力矩随步态行走的变化曲线,并且从人体自身运动和人服接触两个方面分析研究了下肢关节的阻力矩构成。本文研究得出了有人和无人状态下波纹式关节和平褶式关节的阻力矩变化曲线,揭示了两种关节的阻力矩成因,并给出了最优的结构形式。本文给出了低重力环境下着服人体步态行走过程仿真模拟的方法,并提出了一种低重力环境下宇航员运动过程中关节阻力矩的理论计算方法,可以帮助分析航天服下肢系统关节阻力矩。综上,本文对于航天服下肢系统的研究具有一定的理论意义和工程借鉴价值。
其他文献
为了有效应对空间碎片等不明物体的交会威胁,提高航天器在轨空间安全防御能力,本文围绕航天器轨道追逃问题,采用微分博弈理论,研究了完全信息追逃博弈鞍点求解方法,设计了不完全信息追逃博弈最优控制律,并开展了地面半实物仿真实验。论文的主要研究成果如下:提出了完全信息下航天器追逃博弈鞍点的高效鲁棒求解方法。1)针对线性动力学模型下自由时间微分对策问题,提出了降维求解方法。该方法将十二维两点边值问题转化为四维
激波诱燃冲压发动机作为一种新概。念发动机,是吸气。式高超声。速飞行器很有前景的一种推。进系统。在飞行器前体/进气道上喷注燃料促进混合是激波诱燃冲压发动机的关。键技术之一。本文采用数值模。拟方法研究了高超声。速来流下前体/进气道上多种燃料喷注方式的混合效果及其混合增强机理。首先,本文较为系统地介绍了激波诱燃冲压发动机,超声速来流下的单孔燃料射流、多孔(空气)射流以及脉冲射流等内容的国内外研究现状,为
火箭发射技术在航天器应用中至关重要,采用牵制释放发射技术能够有效提高火箭发射的可靠性,实现对火箭起飞时的牵制和缓释放。牵制释放装置的工作性能往往决定了牵制释放系统的优劣。牵制释放装置主要分为爆炸型和机构型两类。随着火箭规模的不断增大,机构型牵制释放装置因其可调节性好、使用范围宽的特点,广泛被世界航天大国所接纳。当前大部分对牵制释放技术的研究主要是针对牵制释放过程中火箭动力学响应分析办法和对装置中套
稀薄气体流动由于微纳机电系统和航天工程的蓬勃发展而受到广泛关注。稀薄条件下气体分子间碰撞频率减小,气体与固体表面的相互作用则起主导作用。作为稀薄气体动力学的关键问题,气固界面相互作用由于物理上的复杂性,通过理论方法和实验方法进行研究十分困难,相关的研究进展也比较缓慢。本文构建了双原子分子氮与金属铂的相互作用模型,基于分子动力学方法模拟了气气固碰撞过程。通过速度采样法使入射的气体分子具有宏观来流特征
卫星编队被普遍用于军事侦察、导航定位、环境监测、航海监测等方向,随着人们对天基信息需求的增加,航天网络化、智能化成为一个必然的趋势,卫星编队网络的建设刻不容缓。卫星网络组网协议是卫星网络能够正常工作的基础和前提,随着航天器节点的不断增多,其几何拓扑呈现出动态性、复杂性、异构性的特点,为了适应卫星编队的发展,我们需要建设一个更加灵活、可靠、大容量、低时延的自组织网络。本文主要探讨卫星自组织网络的几项
空间大型薄膜天线结构由于质量轻、收纳比大、易于展开等优点,已成为近年来国内外空间天线结构的研究热点之一。为掌握膜面预应力对其动力学特性的影响和受到干扰载荷时结构的振动响应规律,以及采用更加智能自主的控制算法对结构进行振动控制,本文进行了相关研究并做了如下工作。1.对平面薄膜天线结构进行了物理简化处理,采用ABAQUS软件建立了薄膜膜面与支撑框架的有限元模型,并将二者之间的相互作用设置为多点约束-绑
相对运动轨迹规划是实施航天器在轨服务、碎片清除与抵近侦察等空间任务的关键技术之一。在执行实际任务时,受导航、模型、机构执行等不确定性因素的影响,航天器相对运动轨迹将偏离预先规划的标称轨迹,对制导、控制系统提出更高要求,也容易造成更多的推进剂消耗。同时,随着空间碎片、微纳卫星等微小目标的日益增多,受空间目标探测手段能力限制,实施航天器相对运动的任务环境也充满不确定性。因此,如何在不确定性条件下开展航
本文以空间非合作目标近距离操作为背景,对非合作目标天基搜索识别、非合作机动目标导航滤波以及逃逸器主动规避策略进行了研究,开展了地面半实物仿真实验进行验证。论文主要研究成果如下:提出了基于非线性偏差演化的空间非合作目标天基搜索方法。1)采用基于状态转移张量的非线性偏差演化方法求解了相对状态均值与协方差矩阵的传播及状态空间的转变,并将相对状态空间的位置误差椭球转换为测角空间的角度误差椭圆;2)基于角度
近年来,过渡金属硫族化合物(TMDCs)因具有优异的光学和电学特性而引起各界广泛关注,该材料可用于光催化、超快激光器和高性能光电器件等研究领域。本文开展了基于TMDCs(MoS2、ReS2)及其异质结(MoS2/ReS2)的荧光拉曼光谱特性以及载流子动力学特性的实验研究。具体工作如下:1.研究了常温和大注入条件下的低维MoS2中载流子的超快光学特性,并探究不同注入条件对MoS2材料载流子超快弛豫特
高超声速飞行器面临严酷的气动热环境给飞行器结构带来沉重的热防护压力;而在飞行器长时间飞行的需求导致机上电源体积和重量的急速增加,极大增加了飞行器的负担。从能量角度分析,一方面是外部需要防护的大量气动热,另一方面飞行器上可用能源负担加重,因此将气动热有效收集并加以转化利用是高超声速飞行器一个重要的研究课题。本文基于飞行器结构并结合结构热管理概念,设计了一种集气动热收集和转化利用功能为一体的新型热防护