【摘 要】
:
马氏体不锈钢的显著特点是淬透性好,可以通过淬火、回火等热处理工艺进行强化,从而得到较高的强度、硬度、良好的耐磨性及耐疲劳特性,并具有一定的耐腐蚀能力,因此在石油、化工、汽车及航空等领域获得了广泛应用。但由于马氏体不锈钢焊接接头易产生裂纹、脆化等缺陷,在很大程度上限制了它的应用。本文采用FISCO试验、热影响区最高硬度试验和斜Y型坡口焊接裂纹试验评定了新型热轧马氏体钢10Cr13Ni2的裂纹敏感性;
论文部分内容阅读
马氏体不锈钢的显著特点是淬透性好,可以通过淬火、回火等热处理工艺进行强化,从而得到较高的强度、硬度、良好的耐磨性及耐疲劳特性,并具有一定的耐腐蚀能力,因此在石油、化工、汽车及航空等领域获得了广泛应用。但由于马氏体不锈钢焊接接头易产生裂纹、脆化等缺陷,在很大程度上限制了它的应用。本文采用FISCO试验、热影响区最高硬度试验和斜Y型坡口焊接裂纹试验评定了新型热轧马氏体钢10Cr13Ni2的裂纹敏感性;通过对比三种不同工艺条件对10Cr13Ni2钢焊接接头组织、拉伸性能、冲击韧性的影响进行了试验分析,并研究了焊接接头在5%NaCl溶液和5%Na2SO4溶液中耐腐蚀性能。(1)FISCO试验表明在焊接电流由80A升至120A时,裂纹率增大,焊接电流由120A升至140A时,裂纹率减小。在本研究条件下电流为120A时裂纹率最大,且热裂纹类型为结晶裂纹。(2)热影响区最高硬度试验说明预热温度在0℃至250℃区间时对该种钢材产生冷裂纹倾向不大。斜Y型坡口焊接裂纹试验证明在预热温度为150℃和250℃时,未产生冷裂纹。(3)预热温度由150℃升至250℃时,焊接热影响区组织主要为马氏体+铁素体,铁素体由无规则块状分布变为沿熔合线规则分布,焊缝区组织为马氏体,温度升高,组织明显长大且柱状特征减少;预热250℃,经过610℃回火处理后,焊接接头组织为回火索氏体+逆变奥氏体。(4)预热温度为150℃的试样的抗拉强度等综合参数最佳,断口呈塑性断裂,因此拉伸性能最好。不同工艺条件对焊接试样的冲击韧性影响不大,其中预热温度为150℃断口形貌为韧窝特征,韧窝小而浅,因此冲击韧性略优。(5)10Cr13Ni2钢焊接试样在腐蚀介质为5%(质量分数)NaCl溶液中耐腐蚀性能劣于在腐蚀介质为5%(质量分数)Na2SO4溶液。焊缝区的耐腐蚀性能均优于焊接热影响区。在两种不同腐蚀介质中,焊接接头试样均发生点蚀现象,预热温度为250℃时焊接接头的耐腐蚀性能在两种腐蚀介质中均为最佳,母材耐腐蚀性能最差。
其他文献
激光金属增材制造技术能够实现复杂金属零件的直接近净成形,具有制造周期短、材料利用率高、工艺柔性高的独特优势,但激光金属成形过程中易产生各种冶金缺陷,严重影响零件的力学性能。本文提出了激光金属沉积成形中冶金缺陷红外在线扫描检测方法。对金属成形缺陷表面热传导机理、成形表面缺陷处温度分布规律进行了系统研究与分析,并进行缺陷检测原理验证实验,对采集的温度波动曲线进行滤波降噪、缺陷识别等。本文的主要工作如下
镁合金具有密度低、比强度高、比刚度良好等优良性能,且储藏量丰富,具有很广阔的应用前景,但是由于镁合金的化学反应活性极高,极易腐蚀,限制了镁合金的应用。镁合金微弧氧化处理技术可大大提高镁合金耐蚀性,但由于微弧氧化膜层表面疏松多孔,对微弧氧化膜层再进行一次封孔处理,将能进一步提升镁合金的耐蚀性能,具有深远的现实意义。本文通过对镁合金进行微弧氧化-电泳复合处理及微弧氧化-UV固化复合处理两种处理工艺,分
单点增量成形技术是一种钣金零件无模柔性成形技术,因其工装简便、易实现自动化、柔性高等优势,适用于板料和管料类多品种小批量零件的成形加工。管料增量成形是利用形状简单的工具,沿分层成形轨迹对管壁施加局部载荷,使管壁当前加载区域产生变形,累积该变形获得所需管状零件。针对金属波纹管现有的液压成形、机械胀形及焊接成形等工艺存在模具复杂、能耗高及柔性差等问题,本文提出金属波纹管单点增量成形技术。通过金属管增量
冷滚打成形作为一种新型的近净成形技术,是通过高速旋转的滚打轮对制件进行断续的击打和滚压作用,迫使制件局部金属材料在常温条件下发生塑性流动,通过运动轨迹的叠加和变形的不断积累最终形成高性能制件。冷滚打成形技术展现出来的绿色、节能、高效等诸多优点与当今制造业的发展期趋势一致,在齿形零件的制造领域处于前沿位置。随着冷滚打成形技术研究的不断深入,成形过程中影响因素的多样性以及工艺参数之间的多重耦合作用使得
大尺寸复杂构件的低成本、高效快速近净成型是制造技术重要发展方向,在航空、航天、汽车及能源等工业领域具有不可替代的作用。增材制造是一种无模具,可直接低成本一体化制造复杂构件的新技术,其优越构型能力使现有制造技术在结构功能一体化制造方面难以实现的问题得以很好解决。本文以5356铝合金结构件电弧增材制造为对象,重点研究结合层和沉积层凝固机理以及热输入方式对试件组织性能的影响规律,具有重要的理论意义和应用
对于高速发展的制造业,急需研究一些能够满足在低成本的前提下制造出高精度产品的方法,而误差补偿技术具有成本低、快速提升机床精度的特点,因而得到了广泛关注。传统的误差补偿方法主要采用激光干涉仪对数控机床的几何误差进行检测并补偿,然而该方法无法补偿机床在加工过程中产生的误差,而利用插补器进行误差补偿又会受到机床访问权限的限制。针对该问题,研究者提出了基于离散模型的自适应补偿算法,并将误差补偿到模型上的每
镁合金由于高比强度、优异的电磁屏蔽性和可加工性在汽车工业、航空航天、生物医疗和电子通信等领域引起了广泛关注。但是镁合金高的电化学活性,使其易于氧化且在室温下易于腐蚀,严重限制了其工程应用。ZrO2和TiO2是一类化学性质稳定的氧化物陶瓷材料,超疏水表面可在金属基体和腐蚀液之间形成一层空气膜并有效阻碍腐蚀性介质与金属基体的相互作用,在镁合金表面构筑ZrO2/TiO2的超疏水层则有望显著提升镁合金材料
管道输送作为石油天然气主要的运输方式,最为经济安全,在国内外均发展迅速。但频繁发生的油气泄漏、输送管爆炸等事故逐渐引起了人们的广泛关注,其中腐蚀破坏是影响管道系统使用寿命和可靠性的关键性因素。层状复合材料使强度、熔点、热膨胀系数差异较大的异种金属实现完美的冶金结合,充分发挥了每种材料的各自特性。本文以TA1、Q235异种金属为研究对象,从熔化焊非均匀温度场及组织匹配性出发,剖析TA1、Q235焊缝
近年来,工业技术不断朝向现代化、产业化以及规模化发展,各种极端的工作条件频繁出现,对于加工工具、材料提出了更加严苛的要求。硬质涂层作为一种高性能材质,可用作材料表面充当防护涂层,从而提高材料的使用寿命,使其能够适应更加复杂的工作环境中。硬质涂层通常包括高硬度、高熔点的碳化物、氮化物、碳氮化物、硼化物、氧化物等材料。氮化物硬质涂层作为第四族元素综合性能优异,具有熔点、硬度高,耐磨性以及耐腐蚀性优良等
β单相区锻造(β锻)结合两相区热处理为获得综合性能优异的片层交织的网篮组织提供了一种可能的方法,片层的含量、形貌和分布决定着网篮组织的性能,对其预测控制极为重要。然而该过程中片层的演化复杂,且对锻造和热处理工艺参数敏感。因而,在明确网篮组织形成过程的基础上,研究探明β锻结合两相区热处理工艺对网篮组织中片层演化的影响规律是实现目标组织控制的关键。本文采用热模拟压缩实验、热处理实验,结合定量金相分析技