论文部分内容阅读
目前对电化学电容器的研究可以分为两个方面:一是研究开发新材料,寻找更理想的电极体系和材料;另一方面是进一步提高现有体系和材料的性能。其中寻找高性能的电极材料以提高超级电容器的主要技术参数成为了研究的主攻方向。本论文共分为四章:第一章是电化学电容器的研究背景;第二章是Ru1-yCryO2/TiO2纳米管复合材料的电容行为;第三章是Co(OH)2/活性炭复合材料的制备及其超电容行为;第四章是基于氧化镍的超级电容器的研究。具体内容如下:第一章概述了电化学电容器的研究背景、工作原理、储能机理、特点、应用现状等,并详细介绍了碳基材料、金属氧化物以及各种金属复合材料等做为电化学电容器材料的最新研究进展。最后提出了自己对电化学电容器电极材料研究设想和方法。第二章为Ru1-yCryO2/TiO2纳米管复合材料的电容行为。采用水热合成法制备了TiO2纳米管,并且采用氧化还原法使Ru1-yCryO2沉积在TiO2纳米管上,形成Ru1-yCryO2/TiO2纳米管复合材料。通过XRD、SEM和TEM对其进行结构与形貌的表征。电化学测试表明,这种复合材料有良好的电化学电容行为,且可大大提高贵金属RuO2在电极材料中的利用率,降低成本。第三章为Co(OH)2/活性炭复合材料的制备及其超电容行为。通过化学沉淀法将Co(OH)2沉积在活性炭(AC)上,制成Co(OH)2/活性炭超级电容器复合材料。XRD、SEM以及电化学测试结果表明,Co(OH)2/活性炭复合材料具有优良的电化学电容行为。第四章基于氧化镍的超级电容器研究,分为两部分:1.以类普鲁士蓝为前驱体制备氧化镍及其电化学电容行为。采用化学沉淀转化法首先制备了类普鲁士蓝NiHCNFe前驱体,在碱性条件下进行沉淀转换生成Ni(OH)2,然后300℃热处理制备了纳米级氧化镍。以XRD、TEM对其进行结构与形貌表征,以循环伏安、恒流充放电以及交流阻抗测试对其进行电化学性能测试。结果表明,以此方法制备的纳米级氧化镍作为超级电容器材料具有优良的电化学性质,其放电比电容最高