论文部分内容阅读
碳纳米管(CNTs)由于其特殊的结构和介电性,使其具有质量轻、导电性可调、高温抗氧化性能强和稳定性好等特点,是一种优异导电性吸波材料。铁磁体如磁性金属(Fe,Co,Ni),磁性金属合金,铁氧体等因其磁性能优异同样成为良好的吸波材料。将轻质导电性强的CNTs与纳米铁氧体磁性材料复合制备得到电损耗、磁损耗相结合的“轻、宽、强”多重特性的CNTs/铁氧体复合吸波材料。本文以铁氧体磁性纳米材料为催化剂通过化学气相沉积法(CVD)法原位生长CNTs,制备CNTs基复合材料。该材料中CNTs以化学键方式与铁氧体磁性材料键联,不仅将具有强磁性的磁性纳米材料与导电性的CNTs有机结合,充分实现二者之间协同效应,而且过程可控。首先,采用CTAB/正戊醇/环己烷/水微乳液体系,以草酸为沉淀剂,经微乳液法在室温条件下分别制备Co/Ni/Fe,Zn/Ni/Fe,Cu/Ni/Fe体系的三金属草酸盐纳米棒,利用程序升温控制技术将其焙烧,分别得到Co/Ni/Fe,Zn/Ni/Fe,Cu/Ni/Fe的复合氧化物纳米棒,并以其为催化剂,乙醇为碳源,通过CVD法生长CNTs制备CNTs基复合材料,研究反应温度对复合材料结构形貌及磁性能的影响。Co/Ni/Fe为催化剂在高温反应条件下其一维棒状结构无法保持,在420℃反应温度催化剂表面生长出直径在10nm左右的CNTs,复合材料主要由CNTs和Fe3C组成;以Zn/Ni/Fe铁氧体为催化剂制备复合材料会出现大量螺旋状碳纤维,且催化剂形貌结构均无法保持;将Cu/Ni/Fe草酸盐纳米棒500℃焙烧后得到的CuO-NiFe2O4复合氧化物为催化剂,在低温(400-480℃)反应条件下可以得到催化剂棒状表面原位生长CNTs的复合材料。其次,以乙二醇为溶剂,聚乙烯吡咯烷酮(PVP)为表面活性剂,尿素为沉淀剂通过溶剂热分别制备Ni/Fe,Co/Fe铁氧体纳微球催化剂,以乙醇为碳源,采用CVD法制备CNTs基复合材料。Ni/Fe铁氧体纳微球为催化剂在450-600℃均有CNTs生成,管径随温度升高而增大,在450-550℃会伴随生成碳纤维;Co/Fe铁氧体纳微球在150℃条件下可通过调节PVP及尿素添加量得到,在450-550℃反应条件下Co/Fe铁氧体纳微球催化制备CNTs过程中下主要生成螺旋状碳纤维,在600℃时出现大量CNTs。最后,通过溶剂热法制备直径在微米级的Co/Fe、Zn/Co/Fe铁氧体颗粒为催化剂,通过CVD法原位生长CNTs制备CNTs复合材料。利用网络矢量分析仪对复合材料的电磁参数进行测试。研究了反应温度对复合材料的结构、形貌、磁性能及吸波性能的影响。以Zn/Co/Fe铁氧体为催化剂600℃条件下制备的复合材料最大吸收强度值为-9.98dB(厚度为2mm,20wt%)。