论文部分内容阅读
研究背景将放射性核素与纳米材料相结合用于改善恶性肿瘤的治疗的研究,将多种跨学科的领域交叉融合起来,具有独特的科研意义和潜在的临床应用前景。然而,目前将二者联合的相关研究多是机械地将纳米材料作为核素的运载体,产生的生物效应多是二者单纯的作用叠加。如果能找到一种方法将二者的特性巧妙地结合起来,诱导发生某种相互作用,不仅有利于材料的有效利用和简化设计,而且能通过协同效应促进实现高效的肿瘤治疗。本论文聚焦于以上科研理念,依托于课题组的长期合作方中国科学院上海硅酸盐研究所稀土生物化学与医用功能材料团队先进的纳米材料合成技术。我们将临床常用的放射性核素与合成技术成熟的纳米材料巧妙结合,利用二者优势互补,创新性地构建了两种核素-纳米材料复合物体系。经一系列生物学检测手段证实,本课题构建的两种体系均实现了多功能协同增强的高效肿瘤治疗。主要包括以下两方面内容:主要研究内容和实验结果1.基于131I-AuNPs-TAT实现肿瘤细胞核靶向的内源性放射免疫治疗利用改进的非极性还原方法,成功合成超小粒径(8.36 nm)的金纳米颗粒(Aunanoparticels,AuNPs),尺寸均一、分散性及稳定性良好;进一步在其表面连接细胞穿透肽(TAT),共聚焦显微镜和生物透射电镜下观察确定AuNPs-TAT具备良好的细胞核靶向功能;最后采用经典的Iodogen标记法标记放射性核素131I并获得终产物131I-AuNPs-TAT,131I的初始标记率高,标记产物的体外稳定性良好。在该核素-纳米复合物体系中,TAT多肽将131I靶向递送到肿瘤细胞核内部直接损伤DNA;AuNPs诱导131I衰变产生的β-射线转化为X射线,不仅扩大了辐照范围,而且产生了“免疫增强效应”。细胞实验和活体实验结果表明,该复合材料能显著抑制结肠癌的生长,协同增强131I对肿瘤的放疗效果。基于此,我们提出一种新型的内源性放射免疫疗法(internal radio-immunity therapy,IRIT),并将131I-AuNPs-TAT的合成过程及其发挥高效放疗作用的机制总结为如下示意图:2.基于125I-TiO2-TAT/HA2实现溶酶体逃逸与肿瘤细胞核靶向的催化内照射治疗采用经典的溶剂热技术,成功合成高活性{101}晶面的锐钛矿型单晶氧化钛纳米颗粒(TiO2nanoparticles,TiO2NPs),形貌均一,呈菱形,粒径长11.78±2.23 nm,宽3.91±0.56 nm;在TiO2NPs表面连接兼具溶酶体逃逸与细胞核靶向功能的融合肽(TAT/HA2),生物电镜扫描证实获得的TiO2-TAT/HA2能在逃逸溶酶体捕获后高效靶向进入细胞核内;进一步采用Iodogen标记法将放射性核素125I标记在TiO2-TAT/HA2上,获得的125I-TiO2-TAT/HA2具有良好的体外稳定性。在该结构中,TAT/HA2能介导125I对肿瘤细胞核内DNA的靶向杀伤;而125I的俄歇电子与TiO2反应后能催化水分子的活化,进而促进125I的γ射线诱导的毒性羟基自由基(·OH)的产生。细胞及活体实验证实,125I-TiO2-TAT/HA2能显著抑制实体肿瘤(胰腺癌)的生长,明显改善125I对肿瘤的放疗效果。本研究最大创新性在于,有效利用125I作为电子给体激活TiO2NPs的催化活性并促进水的活化,使γ射线诱导的水辐解过程更容易发生,从而产生大量·OH,最终实现高效放疗。我们将该创新性的催化内照射疗法(catalytic internal radiotherapy,CIRT)的作用机理总结如下:讨论分析在恶性肿瘤的常规治疗手段中,放疗占据了重要的地位,其中内照射治疗(internal radiation therapy,IRT)因较外照射治疗对正常组织副损伤小这一独特优势而受到关注。IRT通过放射性核素衰变产生射线而发挥肿瘤治疗作用,然而,某些类型的射线的能量不足、穿透深度不够等缺陷制约着核素的治疗效果和临床应用。近年来,纳米材料在医学中的应用不断更新发展,但其在IRT中的应用研究很少,研究内容相对局限,因此还有很大研究和发展空间。本文即是对此做了初步探索,以期为恶性肿瘤的治疗寻找新的思路和手段。本课题组着眼于提高肿瘤疗效,促进人民健康,深入研究了改善癌症治疗的新策略。通过分析临床常用放射性核素(131I,125I)的衰变射线特点,针对性地制备了两种具有特殊性能的纳米材料(AuNPs,TiO2NPs),利用巧妙的合成工艺将核素与纳米材料相结合,通过特定的物理及化学反应实现二者的优势互补。我们通过一系列实验检测手段证实了两种复合物均对肿瘤产生了良好的治疗效果,并对相关治疗机制做了深入的探讨和严格的验证。综上所述,本课题通过巧妙的材料设计将放射性核素的衰变产物特点与纳米材料的优异性质相结合,分别实现了基于“内源性放射免疫疗法(IRIT)”和“催化内照射疗法(CIRT)”的肿瘤高效治疗。本课题的设计不仅有望拓宽核素-纳米药物的临床应用范围,也为肿瘤治疗的科学研究提供了新思路、新策略。