论文部分内容阅读
纳米技术是世界发达国家最优先发展的科技领域之一,纳米材料已广泛应用于工业、农业和科技等领域。在创造产业利益的同时,纳米材料通过直接或间接方式被排放入环境,由此引发的环境风险问题受到广泛关注。水环境是纳米材料的主要归宿地之一,复杂的水环境会改变纳米颗粒在水中的环境行为与稳定性,与活性污泥的相互作用也会对污水处理效能和微生物特性产生抑制作用,最终危害水生环境安全。针对此问题,本文以应用最为广泛的纳米二氧化钛(纳米TiO2)为研究对象,研究纳米TiO2在水中的存在特性,分析TiO2在天然水与污水中的粒度分布、稳定性及其影响因素。同时研究纳米TiO2对污水生物处理系统中活性污泥絮体稳定性和表面特性的影响,确定纳米TiO2对活性污泥絮体物理化学稳定性的影响机制。采用最新的焦磷酸测序技术解析纳米TiO2对活性污泥絮体生物稳定性的作用行为,考察了微生物生理生化特性及群落生态结构对纳米TiO2长期影响下的环境响应,为深入研究纳米材料对水环境的潜在危害提供理论基础。纳米TiO2在水中的表面电荷、粒径范围和浓度是影响其在水环境中迁移转化的关键因素。在去离子水中,纳米TiO2颗粒分布均匀,粒径大小差异较小,分散程度较好。纳米TiO2的等电点为pH=6.50,当pH<6.50时,纳米TiO2颗粒表面带正电荷,而溶液pH>6.50时带负电荷。纳米TiO2与水中溶解性有机质(天然有机物DOM、污水中有机物)之间的相互作用形式主要为配位体交换和静电力作用,其中配位体交换作用主要为羧基和酚羟基官能团的相互作用。天然水环境条件下,当pH为7时,纳米TiO2与低分子量DOM配位体反应程度较高,而静电排斥为高分子量DOM与纳米TiO2的作用主导,导致水体颗粒聚集体稳定性增加。pH为5时,纳米TiO2与DOM之间的相互作用由两种方式共同完成。与天然水环境相似,城市污水环境中低分子量有机物与纳米TiO2相互作用主要以配位体交换反应为主,而静电斥力作用是高分子量有机物与纳米TiO2作用的主导,因此城市污水环境中主要为小分子量有机物与纳米TiO2的相互作用,这为有效去除进入进入城市污水处理厂后的纳米材料提供理论依据。通过扩展的DLVO理论的解析和热力学分析手段,应用开尔文显微镜原位检测活性污泥絮体表面电势的创新手段,考察了纳米TiO2对活性污泥生物处理系统中活性污泥絮体物化稳定性的影响。理论分析与实验结果表明,长期暴露的纳米TiO2使活性污泥絮体与纳米颗粒碰撞几率增加。由于活性污泥胞外聚合物(EPS)的作用使纳米TiO2包裹于絮体表面。通过活性污泥絮体表面电势的表征,分析了纳米TiO2对活性污泥絮体表面电势的影响。结果显示纳米TiO2的存在导致系统内微生物胶体稳定性增加,降低了絮体沉淀性能,从而增加了活性污泥处理系统运行失效的风险。通过扩展的DLVO理论解析了纳米TiO2存在的活性污泥微生物体系的稳定性。在范德华吸引作用、静电力作用和水合作用共同作用下,短程范围内活性污泥微生物体系中的纵斥力势垒不断增加,吸引作用和有效Hamaker值均呈下降趋势。在中程范围内静电力自由能对总位能的贡献呈现优势,而且随着纳米TiO2浓度的增加呈增加趋势,导致活性污泥的稳定性增加、凝聚能力降低,直接降低泥水分离效果。采用序批式活性污泥工艺(SBR)模拟城市污水活性污泥生物处理系统,研究长期暴露下(30天)不同浓度纳米TiO2对稳定运行状态下SBR系统处理效能和微生物生理生化与菌群群落生态的影响。实验结果表明,不同浓度纳米TiO2对活性污泥系统有机物和NH3-N的去除能力具有显著的抑制作用,且随着投加量的增加抑制程度加强,而整个过程对PO43-去除没有影响。不同浓度纳米TiO2对微生物数量和活性影响研究结果证实,微生物数量和活性受纳米TiO2的影响结果与污水处理效能结果一致,在低浓度投加条件下,系统微生物浓度和活性并未受到较大影响,而当投加浓度提高后(25和100mg/L),由于活性污泥胞外聚合物(EPS)中的羧基和羰基与纳米TiO2发生了配位体作用,导致系统MLVSS含量与未投加系统相比分别降低了18.4%和22.9%,以TTC-电子传递体系(TTC-ETS)表征的污泥活性分别降低了19.95%和44.77%,EPS中蛋白质和多糖含量均有不同程度的降低。应用焦磷酸测序技术深度分析了微生物对纳米TiO2长期影响的群落结构响应,实验结果表明在纳米TiO2长期存在下的活性污泥微生物群落结构与无纳米TiO2存在时存在明显差异。活性污泥菌群Shannon指数随着纳米TiO2投加浓度的提高逐渐降低,生物群落多样性受抑制于纳米TiO2,导致菌群稳定性降低。微生物群落差异性分析结果显示,活性污泥系统中优势菌群结构对不同浓度的纳米TiO2存在相应的菌落响应,且在聚类关系上存在差异。纳米TiO2对微生物在门、纲、属水平均有一定程度的影响,以Nitrospirae门硝化细菌和Actinobacteria门异氧菌受抑制程度最高,而对Proteobacteria门除磷菌具有促进作用。