论文部分内容阅读
近年来由于物联网(Internet of Things, IoT)的广泛应用,在各种场合对系统的规模化与空间密度的需求日益增长。由于作为物联网基础的无线传感网(VVireless Sensor Network, WSN)自身的资源受限、通信速率低的特点,对无线传感网的有效管理和容量提升成为了一个迫切的需求。现有的大规模无线传感网(Large-Scale WSNs, LS-WSN)的管理技术目前主要针对的是传感网的规模化问题,而没有对区域高密度节点的问题提出有效的解决方案。因此,本文就有效利用现有的硬件和频带资源解决无线传感器网络的区域高密度问题提出一个有效的解决思路并结合现有的LS-WSN管理技术来有效支撑区域内高密度无线传感网的应用。本文从无线传感网的体系结构及其典型协议栈ZigBee出发,研究各种组网拓扑结构的特点。在对集中式、分布式和层次式等架构及其系统设计进行了深入研究后,对其在功能、性能与成本上的差异进行了分析。在此基础上,根据实验室项目的实际需要,设计了基于集中-层次式的架构,采用非WSN的高速通信方式来解决WSN的通信瓶颈问题,有效地改善WSN系统的信道利用率和系统吞吐率。并自主研发其各个层次的指令集与通讯协议,提出了广义NV空间访问来改善跨层次调用的易用性。该系统架构采用了高速三层异构WSN模型,能有效地改善WSN系统在空间高密度条件下的性能。采用本文方案可以在2.4GHz频带上ZigBee硬件的系统提供比传统的ZigBee单个个域网(Personal Area Network, PAN)多约16倍的系统容量,理论上能够支持超过65536×16个节点。本文方案能够很好地兼容现有的小规模WSN系统,同时也具备与未来的WSN兼容能力,能够通过简单的方法为现有的WSN扩容并改善其系统性能。系统还提供了域内可交换同构网的负载均衡功能,能够解决多集群的负载均衡问题。经实验验证,该设计架构能够有效支持区域内多信道多集群的WSNs。模拟仿真显示对区域内高密度节点的通信质量有较大改善。