论文部分内容阅读
黄金首饰的消费量在黄金总消费量中占有的比重可以高达65%。黄金硬度较低,容易发生塑性变形制约着黄金首饰款式的创新和发展,电铸工艺的出现使得行业内可以制作强度更高的黄金首饰。在节约黄金用量的同时可以得到体积较大的黄金首饰,且不会降低首饰的强度。传统的黄金电铸工艺采用稳定性高的氰化体系,这种工艺使用的氰化钾对环境以及操作人员身体具有潜在的危害。原国家经贸委2002年6月发布的第32号令,限令2003年底淘汰“含氰电镀”。后由于无氰电沉积技术尚无法替代氰化物工艺,2007年10月国家发改委发布57号令,暂缓淘汰“含氰电镀”。无氰电铸工艺的应用以及普及具有必要性。目前主流的无氰电沉积体系为亚硫酸盐-硫代硫酸盐体系,金盐的制备环节复杂,成本高,电解液中的亚硫酸根容易发生分解,稳定性差。因此,该无氰体系在黄金首饰加工行业的普及推广具有较高的难度。本文以三价金离子和氯离子的络合物氯金酸作为络合物,研究了一种氯金酸黄金电铸工艺。该工艺已经完成了终试,经济指标、工艺指标、性能指标、环保指标均满足黄金首饰加工行业的要求。氯金酸无氰黄金电沉积工艺生产流程易操作、金盐制备简单、电解液使用寿命长、生产所需材料成本低,在成本方面有很大的优势;在工业生产条件下,规范了一整套工业生产流程,电沉积18h左右后黄金电铸样品厚度可以达到150~200μm。每天每个电铸缸稳定生产300克硬金产品,电解液可以维持30天的稳定生产,得到的黄金电铸成品可以作为硬金产品;市场上氰化体系的硬金样品维氏硬度值在70HV左右,无氰黄金电铸工艺得到的硬金样品的维氏硬度值可以达到105HV左右。氯金酸无氰体系得到的产品相比氰化体系得到的产品表面光泽更强、硬度值更高;氯金酸体系生产过程中产生的废水废气易处理,对环境以及操作人员友好,在黄金首饰加工行业具有很高的应用推广价值。为了获得光泽良好、粗糙度低、晶粒小、硬度高、致密的黄金电铸层,研究了4种添加剂,添加剂种类以及浓度的变化对电沉积层光泽、微观结构、晶粒大小、织构系数和电沉积层成分(金的成分以及首饰行业规定有害元素含量)的影响为:(1)添加剂浓度为单一变量的对比试验对各组样品的光泽、晶粒大小、硬度值的综合指标评价,得到添加剂A的最佳浓度为20ppm,添加剂B最佳浓度为300ppm,添加剂C最佳浓度为210ppm,添加剂D最佳浓度为16ppm;(2)添加剂ABCD均为最佳浓度的组合添加剂条件下,黄金电沉积样品光泽强、平整度高,晶粒尺寸低至42.0nm,织构系数高达88.62%,维氏硬度值高达115.8HV。(3)根据霍尔佩奇公式,晶粒尺寸越小的样品,维氏硬度值越高。将样品的晶粒尺寸、织构系数和维氏硬度值做了多元线性回归分析,发现具有一定择优取向的电沉积层,其维氏硬度值受晶粒尺寸大小影响最大,织构系数影响不显著;(4)在理想的电源参数条件下,金含量可以高达99.9%的金层,且添加剂的使用不会引入首饰行业规定的对人体有害的致敏元素。为了进一步提高黄金电沉积层的宏观特征和整体强度,研究了电镀电源的工艺参数,发现脉冲周期对电沉积层结果具有较大的影响,随着脉冲周期的增大,电解液中电化学极化和浓差极化的相对强弱发生变化,样品的维氏硬度值呈先增大后减小的趋势;最佳的双向脉冲参数为:正向电流密度0.8A/dm~2,正向占空比40%,正向脉冲频率333HZ,反向电流密度0.4A/dm~2,反向占空比60%,反向脉冲频率1000HZ,正向工作周期40ms,反向工作周期20ms,脉冲周期60ms;使用双向脉冲电源可以得到晶粒尺寸为37.97nm,维氏硬度值高达122.8HV的黄金电沉积样品。脉冲电源尤其是双向脉冲电源条件下,相比直流电源而言,得到的样品光泽更强,维氏硬度值更高。单脉冲电源条件下样品的定向性最好;电流密度最佳范围为0.8A/dm~2~1.5A/dm~2,随着电流密度的增大,样品的均匀性下降。当电流密度增大至2.5A/dm~2,会引起添加剂的分解,出现C和Au的共沉积,降低样品中金的纯度。氯金酸作为一种典型的三价金离子的络合物应用于无氰黄金电铸体系具有很高的研究价值和应用前景。首饰行业的黄金电铸有别于工业电沉积工艺,对金的成色以及微量元素的要求更严格,厚金的电沉积需要较长的电沉积周期,对体系的稳定性要求很高。本文以氯金酸无氰黄金电沉积工艺为基础,从添加剂和电源参数两个方面探讨了影响电沉积层硬度的相关因素,最终得到了宏观特征良好、强度较高、厚度达到200μm的厚金层;在工业环境下进行了扩大化生产,生产的硬金产品可以符合首饰市场要求。