智能车辆自主换道控制方法研究

来源 :江苏理工学院 | 被引量 : 0次 | 上传用户:xxj8880430
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来汽车产业为了顺应时代的发展,在技术上不断地创新,智能汽车凭借其先进的传感器和车联网技术,有助于缓解交通压力,降低事故发生率,并且能够保护人们的生命安全。车辆换道在驾驶过程中是非常普遍的,数据表明交通事故中有一部分的原因就是车辆进行车道更换引起的。因此,对于车辆进行自主换道的研究就显得十分重要了。本文主要从车辆自主换道决策、轨迹规划和轨迹跟踪三个方面进行研究。(1)通过对车辆换道行为分析,本文重点研究的是车辆自由换道的情形。接着通过简化换道场景,引入期望车速和期望车距来描述车辆的换道意图,最后创建换道最小安全距离模型,从而进一步保证换道的安全性和可行性。通过纵向匀速和匀加速换道两种对比实验,得出车辆纵向匀加速换道比匀速换道在同等情况下更为可行,从而验证了换道安全距离模型的正确性。(2)接着搭建基于五次多项式函数的换道轨迹模型,根据换道初始时刻和结束时刻车辆状态量,确定换道轨迹函数。仿真结果表明轨迹变化连续平稳光滑,符合实际情况。同时考虑到换道舒适性和换道效率,设计换道轨迹优化控制器,结合约束条件并引入权重系数进行分析,得出了不同权重比下的换道最优时间,使得车辆的换道轨迹更加优化。(3)通过建立简化后的车辆动力学模型,创建线性模型预测控制器,以实现对换道轨迹的跟踪。控制器以车辆的前轮转角为控制量,并加入输入量约束、输出量约束和控制增量约束,转为二次规划的情形,接着再进行优化求解,从而完成整个系统的控制。仿真结果表明建立的预测控制模型有着较好的轨迹跟踪能力,车辆可以安全稳定的进行换道,同时控制器参数的合理选取有助于提高轨迹跟踪的精度和稳定性。(4)最后在Prescan、Carsim和Matlab中搭建联合仿真实验,设置仿真参数和对比实验,得出的结果都在约束条件范围内,车辆可以安全平稳地进行自主换道,从而验证了本文的车辆自主换道方法的可行性。
其他文献
置换人工心脏瓣膜是治疗心脏瓣膜疾病的常用方法,其中人工机械瓣膜以其卓越的耐久性成为临床上使用最多的人工瓣膜。热解碳作为目前机械瓣瓣叶的首选材料,植入人体后长期与血液接触,患者会出现凝血和血栓等并发症,因此如何提高热解碳的抗凝血性能、减少血栓发生率是当前研究的热点。本文采用纳秒激光在热解碳表面制备平行光栅和微柱阵列结构,通过优化激光参数并结合硅烷化处理制备超疏水热解碳表面,通过血小板粘附、动态凝血、
碳纤维复合材料(CFRP)的宏细观一体化设计是一种综合考虑结构优化与材料铺层优化来提高CFRP结构件性能的优化设计方法。针对CFRP一体化设计过程中由于设计变量较多导致收敛慢的问题,本文提出一种基于变量分层CFRP件结构/材料/功能一体化设计方法。该方法将一体化设计分为系统层面与子层面,子层面包括结构层面与材料层面,结构件的截面轮廓控制节点及其权因子作为结构层面的局部变量进行NURBS宏观结构优化
汽车的迅速普及不仅推动了社会的发展,改善了人们的生活水平,同时也带来了大量的环境与交通问题。智能汽车作为未来汽车产业发展方向,是解决交通拥堵问题的有效手段之一。智能车辆的横向控制作为运动控制的核心技术之一,主要是通过控制转向系统实现对目标轨迹的横向跟踪。本文研究内容将围绕着智能车辆的轨迹跟踪控制方向展开。在研究过程中,首先针对传统最优预瞄控制理论的轨迹跟踪控制方法进行研究。在横摆角速度不变的假设下
分布式驱动电动汽车因其独特的底盘布置形式和底盘构造拥有巨大的控制优势,但随着车辆执行器的不断增多,执行器失效对车辆的安全威胁日益增大,为提高车辆的行驶稳定性和安全性,对分布式驱动电动汽车驱动电机失效下的稳定性控制问题展开相关研究。针对分布式驱动电动汽车执行器未失效状态下的稳定性控制问题,提出了一种分层架构下的稳定性控制策略。在上层控制器中,基于滑模控制算法对车身姿态进行跟踪,获得了车辆行驶所需的期
相比于传统汽车,分布式驱动电动汽车具有车轮可独立控制、响应速度快等优势,如今备受关注。然而,在车辆行驶过程中可能会受到诸如侧风之类的外部扰动,且由于系统复杂性越来越大,执行器和传感器故障的概率也越来越高。这对车辆稳定性造成严重的影响,危及车辆的行驶安全性。本文针对车辆系统的鲁棒容错控制问题,并考虑车辆的队列保持和轨迹跟踪问题进行了控制方法的研究,提出了基于模糊PID的车辆干扰抑制方法、基于自适应B
化石能源的过度使用所引起的能源与环境危机严重影响了人类社会的可持续发展,太阳能、风能、潮汐能等清洁可再生能源存在间歇性和随机性的特点,电化学储能因其具有方便、高效等优点而被认为是一种较理想的储能方式。铅酸电池能量密度低且存在重金属污染的问题,镍氢电池能量密度有限且存在记忆效应,锂离子电池因其寿命长、能量密度高、循环性能稳定和自放电效应低等优点发展迅速。作为锂离子电池负极材料而被广泛研究的钼基金属硫
公路运输作为应用最广泛的运输方式,常用于运输一些危险和有毒的液体货物,而液罐车则是该类货物的主要运输载体。由于液体的流动特性以及液体货物与罐体壁面的流固耦合作用,罐内液体自由液面形状会一直变化,使得液体货物质心发生横向偏移,进而导致液罐车安全事故频发。本文以提高液罐车横向稳定性为研究目标,设计了质心主动纠正偏移装置以实现液罐车主动减晃。此外,基于流固耦合机理,以罐内液体晃动为切入点进行了以下工作:
人类社会发展过程中对自然资源和能源的无节制、无计划的利用不可避免的造成传统材料和能源的逐渐枯竭。因此,提高材料的使用寿命、节能以及对废弃物进行资源化利用是实现人类社会可持续发展的重要保证。本论文制备了铸造粉尘/氯氧镁复合材料和两种提高氯氧镁水泥及其复合材料耐水性能的涂层,实现了氯氧镁复合材料工业废弃物利用、耐久和热反射等功能。本论文的主要研究内容如下:(1)铸造粉尘/氯氧镁水泥复合材料表面超疏水涂
为了解决环境污染和能源危机等问题,能源转换和储存装置引起了人们的极大关注,特别是能源存储装置,如何将有限的能源进行存储是当下亟需解决的问题。超级电容器是一种新型储能装置,它具有充放电过程快、功率密度大、可逆性好等优点,受到广泛关注。电极材料是超电容性能优良与否的关键,钴基化合物具有化学稳定性好、导电性能好的特点,但把它作为超级电容器电极材料时依然存在比表面积较小、活性位点较少等问题,限制了它的实际
低周疲劳失效是压力容器的重要破坏形式之一。在循环载荷作用下,压力容器的局部高应力区会出现微裂纹,随着载荷作用微裂纹不断扩展,形成宏观疲劳裂纹,从而导致容器发生疲劳失效。为了保障承压设备的安全可靠性,需要对材料的低周疲劳性能及疲劳裂纹扩展规律进行系统研究。本文选择压力容器常用材料304奥氏体不锈钢为研究对象,通过低周疲劳试验研究其低周疲劳性能、寿命行为;通过疲劳裂纹扩展试验,并结合数字图像相关法(D