论文部分内容阅读
磁约束聚变能发电技术被认为是解决未来能源危机的最有效途径,我国即将进行的中国聚变工程堆(China Fusion Engineering Test Reactor,简称CFETR)计划,其极向场线圈使用的超导磁体的最高场强为15T,现有的超导线材性能无法满足要求,开发适用于15T高场磁体用的超导线材制备技术为该计划成功的关键。目前用于10T以上高场的超导实用材料仅有Nb3Al和Nb3Sn两种,由于Nb3Al具有比Nb3Sn更好的应变容忍性,因此Nb3Al超导线材是15T高场磁体系统的最佳选择。但国内相关制备技术尚属空白,严重制约了我国磁约束核聚变能技术的发展。本论文围绕高性能Nb3Al超导长线的制备及热处理展开工作,深入研究了Nb3Al超导线材的低温、电磁等物理特性。结合Nb-Al二元和Nb-Al-Cu三元相图,Nb3Al超导线材不能采用现在大规模生产Nb3Sn的青铜法制备,因为Nb、Al、Cu反应生成非超导的三元相。低温扩散得到的Nb3Al偏离化学计量比,线材的超导性能很差,高性能Nb3Al超导线材需要使用快热急冷转变法制备。对Nb3Al前驱体线材进行快热急冷热(RHQ)处理后形成Nb(Al)ss过饱和固溶体,之后进行低温转变热处理,获得接近计量比的Nb3Al。RHQ过程中,Al的有效扩散距离为亚微米量级,因此Nb,Al层厚度在亚微米级,高均匀性的Nb3Al前驱体复合线材制备是后续开展稳定的RHQ工艺的前提。基于此,本文从最简单的套管法入手,以Al棒、Nb管为原材料,经过一次复合、二次复合和三次复合制备线材,通过系统研究线材拉拔过程中的加工性能,获得144芯和156芯套管法长线材的加工工艺,揭示了Nb-Al复合材料的塑性变形特征。144芯Nb3Al前驱体线材经RHQ处理后,在4.2 K、15 T下超导层临界电流密度Jc达到了859 A/mm2。套管法线材的超导相占整根线材比例很低,因此在保证Nb、Al扩散距离前提下,采用卷绕法制备Nb3Al前驱体复合线材,提高超导相的占比。本文用卷绕法制备了单芯、18芯、24芯等结构的Nb3Al前驱体长线,研究了低温扩散和RHQ热处理工艺对Nb3Al超导线材性能的影响。通过分析Nb-Al箔材的塑性变形规律,对比不同芯数导线的加工特性,改善冷加工变形技术后,获得18芯和24芯Nb3Al前驱体长线的优化冷加工工艺。本文研究了单芯和多芯线材的RHQ热处理,分析了线材结构对RHQ热处理参数如加热电流和走线速率的影响:单芯线材中Nb和Al层较厚,Al原子扩散反应不充分,RHQ处理后有少量Nb残余;24芯线材中Nb、Al层厚度较为合适,经RHQ热处理后,全部生成Nb3Al超导相,超导相Jc在4.2K、12 T下达到了1587A/mm2。由于卷绕法结合RHQ方法制备Nb3Al超导线材需要额外的覆铜工艺,因此本文探索了高能球磨(即机械合金化)结合粉末装管法制备Nb3Al超导线带材,期望获得低成本的制备工艺。Al含量为26 at.%,高能球磨2.5 h后获得Nb(Al)ss过饱和固溶体粉,装管拉伸后,制备出单芯和多芯Nb3Al前驱体线材;800 oC处理10 h后,获得的Nb3Al具有最佳的超导体性能,Tc达到15.8 K,临界电流密度Jc在4.2K、12T达到10000A/cm2。采用热压烧结显著提高Nb3Al超导体的致密度和晶粒连接性,热压烧结Nb3Al超导带材的Jc在5K,7T下比常规烧结块体的提高一个数量级。利用卷绕法制备的18芯Nb3Al前驱体线材,结合低温扩散热处理、环氧树脂固化、不锈钢带增强等工艺,制备出国内第一个Nb3Al超导磁体线圈:该磁体在14T背景磁场下,产生1.2T磁场,中心场强达到15.2 T。验证了Nb3Al超导线材的强磁场应用前景。综上所述,本文采用套管法、卷绕法制备了多种结构的Nb3Al前驱体线材,实现了多芯Nb3Al长线的连续快热急冷(RHQ)热处理。利用自主研制的18芯线材,成功制作了国内第一个Nb3Al高场内插超导磁体。开发出高能球磨结合粉末装管法的低成本工艺路线制备Nb3Al超导线带材,作为卷绕+RHQ工艺路线的备选方案。