电渣重熔法制备双金属复合轧辊研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:Norazhongli
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着先进轧机和高效轧制技术的问世,轧制生产线向着大型化、高速化和自动化的方向发展,使得作为轧钢核心装备的轧辊的使用工况变得更为苛刻。轧辊的性能优劣直接影响轧机的生产效率、轧材的表面质量和轧制的成本,因此,对轧辊材质和生产制备工艺的研究已成为国内外轧辊及冶金行业共同关注的问题。传统单一材质合金轧辊难以同时满足轧制过程对其耐磨性和强韧性的双重要求,而双金属复合轧辊,由于其辊芯和工作层(复合层)可以选用不同的材质,它能较好地解决单一材质合金轧辊耐磨性和强韧性之间的矛盾,同时大大降低轧辊的生产成本。因此,高质量、低成本双金属复合轧辊的研究、制造和使用必将成为适应现代轧制技术的新方向。本课题基于电渣重熔技术的优势,以双金属复合轧辊为研究对象,开展了不同导电回路方案下的复合轧辊制备过程工艺特点、不同工艺参数对复合体系温度场的影响、复合轧辊电渣制备过程的试验探索、双金属界面结合机理、双金属界面的结合质量及不同材质间复合的工艺特点等研究。首先,基于电磁场方程、动量方程和热量传输方程等建立了电渣重熔法制备双金属复合轧辊过程的二维稳态数学模型,利用Fluent软件及自定义函数(UDF)、自定义标量方程(UDS)等功能对传统型导电回路:变压器→短网→自耗电极→液态渣池→辊芯→底水箱→变压器(简称为电极→辊芯)进行了数值模拟。结果表明,在该导电回路方案下,回路电流在电极与辊芯间的渣池区集聚并于此处形成最高温,进而造成辊芯表面的过度熔化,不利于获得均匀的双金属结合界面及均匀的复合轧辊工作层成分、组织与性能。随后开展的复合轧辊电渣制备试验及采用低熔点透明溶液体系进行的复合轧辊电渣制备物理模拟试验均证明了上述辊芯表面过度熔化现象的发生。综上所述,在此导电回路方案下,辊芯作为导电回路的一极难以避免表面熔化现象的发生,不利于获得理想的复合轧辊复合层及双金属界面性能。鉴于传统型电极→辊芯导电回路方案的不足,将辊芯从导电回路中解放出来并对其表面温度进行灵活控制是制备高质量复合轧辊的关键。基于此目的,本课题采用先进的导电结晶器技术及上述所建立的二维稳态数学模型开展了新型导电回路:变压器→短网→自耗电极→液态渣池→导电结晶器→变压器(简称为电极→导电结晶器)方案下的数值模拟。结果表明,导电结晶器的采用使得回路电流在电极与导电结晶器间的渣池区集聚并于此处形成最高温。渣池高温区的远离使得辊芯表面的温度具有更大的可调节性。在各工艺参数中,熔炼电参数、辊芯直径、导电段渣池深度等对电渣复合体系的温度场影响最为明显;电极与辊芯表面间距的影响次之,电极插入渣池深度的影响最小。通过合理的工艺参数匹配可获得理想的辊芯表面温度,实现双金属界面的良好复合。基于上述对新型导电回路方案的模拟研究,利用有衬电渣炉、浇渣溜槽、抽锭电渣炉、导电结晶器、渣金液位检测仪等组成的成套设备开展了新型导电回路方案下的电渣重熔GCr15/45号钢双金属复合轧辊试验。经过多次的试验探索及经验总结,最终制备出直径340 mm、复合高度320 mm的GCr15/45号钢双金属复合轧辊铸坯。在复合铸坯的界面冶金结合区切取横剖截面,经低倍检验表明,双金属界面同心度良好且复合层厚度非常均匀,此外,在双金属界面处并未发现有夹渣、气孔、缩孔等缺陷,界面结合良好。复合铸坯纵剖截面则表明了双金属界面由下部至上部呈现出夹渣厚度逐渐变薄并最终消失的趋势,这是由于电渣重熔法制备双金属复合轧辊过程是一个温度逐渐升高并趋于稳定的过程,其辊芯表面被加热程度不同,双金属界面结合状态亦不同。基于Thermo-Calc热力学软件对复合轧辊用GCr15、45号钢的平衡相图计算,选择单相扩散模型并利用DICTRA软件对双金属界面处的元素扩散行为进行计算,界面温度随时间变化函数由Fluent模拟及电渣试验中的实际抽锭速度综合给出。通过对比双金属界面相同位置的Cr元素线扫描分析结果及DICTRA元素扩散行为计算结果,揭示了电渣重熔法制备双金属复合轧辊的界面结合机理为熔合与扩散的共同作用。辊芯45号钢在电渣试验过程中因受到高温液态渣池及复合层金属熔池的加热而升温明显,随着双金属电渣复合过程的结束及已复合铸坯的抽锭,辊芯又发生了降温冷却的过程。在此高温奥氏体化过程中,较高的加热温度、较长的保温时间导致了辊芯表面粗大奥氏体晶粒及部分铁素体魏氏组织的生成。本课题通过合理的热处理工艺消除了魏氏组织、实现了晶粒细化。铸态GCr15/45号钢复合轧辊铸坯界面试样的抗拉强度、剪切强度分别为661 MPa及282 MPa,其拉伸、剪切断口均发生在单材料侧而非双金属界面处,充分说明了此工艺条件下所制备双金属复合轧辊铸坯的界面结合质量较好。高速钢轧辊因具有硬度高、耐磨性好、红硬性好等特点而在轧钢行业开始被广泛使用。本课题基于上述新型导电回路方案开展了电渣重熔法制备高速钢/球墨铸铁双金属复合轧辊的试验研究。基于复合层高速钢及辊芯球墨铸铁的熔化温度特点,利用FactSage软件及炉渣熔点测试仪开发了一种低熔点渣系。采用现有的电渣设备最终制备出复合高度264 mm的高速钢/球墨铸铁复合轧辊铸坯,并对其复合层、辊芯组织及双金属界面处的石墨形态、合金元素过渡、显微组织变化等进行了系统研究。结果表明,经过电渣复合后,发生奥氏体化的辊芯球墨铸铁中的石墨形态、基体组织均发生了明显变化,由于辊芯和复合层的部分熔合及元素的扩散,在双金属界面处形成了大量的不同成分、形貌、含量及分布特征的碳化物,使得界面处硬度增加,在拉伸、冲击试验中易发生脆断。尽管如此,在双金属界面处所取铸态试样的抗拉强度为452 MPa且辊芯球墨铸铁的石墨球化评级为3级,二者均满足国标《GB/T 1504-2008铸铁轧辊》对轧辊的使用要求。
其他文献
随着全球工业的快速发展,气候变化、资源和环境问题已成为全球面临的最大挑战。钢铁工业是国民经济的重要基础产业,同时也是耗能大户,其中炼铁工序的能耗占钢铁流程总能耗的60%以上,所以推进炼铁工业绿色发展成为节能减排的关键。目前炼铁反应器内普遍存在煤气化学能未能充分利用的问题,造成这一现象的根本原因在于反应器内煤气物理能和化学能严重不匹配。尤其是对于采用富氢煤气的直接还原竖炉而言,氢还原吸热导致炉内热需
未来人类将在月球建立基地开发资源或以月球为前沿哨所探索火星,而在月球上开展活动,人类维持生命需要氧气,能源供给将以太阳能为主,需要太阳能级多晶硅Si,基地建设需要Al、Fe和Ti等金属结构材料。由于地球与月球之间的运输成本非常昂贵,因此全靠地球输送难以为继。如果能将月球上丰富的矿产资源(主要是月壤)进行原位开发利用制备金属和氧气,将具有非常重要的意义。论文选用与月壤性质和组成相似的粉煤灰、火山岩和
凝固末端轻压下是改善连铸坯中心偏析与疏松等内部质量问题的有效手段,已成为高品质钢生产的必备工艺。然而,国内某钢铁企业在实际应用中仍存在压下位置不合理、压下效果不理想、中心缺陷改善不明显等问题。此外,偏离压下位置实施轻压下或者施加不合理的压下量,会恶化铸坯内部质量甚至损坏设备,降低产品成材率,损害企业经济效益。因此,准确控制压下参数,合理匹配浇注参数和压下位置与压下量是保证压下效果的关键。本论文围绕
传统铝电解由于采用消耗式炭阳极而存在碳耗高和环境污染严重等问题,惰性阳极能够克服以上缺点,符合当前铝行业绿色发展的要求,成为铝业界的研究热点。NiFe2O4基陶瓷具有优良的耐熔盐腐蚀性能而成为最具工业化应用前景的惰性阳极材料,但韧性和抗热震性能差,导电性能难以满足铝电解要求。本文通过添加具有金属镀层的NiFe204颗粒构建具有金属网状结构的NiFe2O4基惰性阳极,以期提高其导电性、断裂韧性和抗热
国内外研究人员对Al镇静低合金钢生产过程中钢液、熔渣和耐火材料间的相互作用行为进行了大量研究,获得了显著的成果,为Al镇静钢高效冶炼和钢种质量提升提供了极大的助力。近年来,随着研究的深入,以Mn为主要合金元素的中高锰钢因其良好的综合力学性能引起了研究人员的重点关注。由于合金元素含量高,中高锰钢与熔渣、耐火材料等冶金辅助材料间的相互作用及夹杂物的生成和演变行为有着区别于普通Al镇静低合金钢的显著特点
随着电解铝工业的快速发展,大量含有Li、K氧化物的A1203被作为铝电解原料在企业中使用,致使Li和K在铝电解槽中富集,造成铝电解质由传统铝电解质体系向复杂铝电解质体系转变。目前从实际生产情况可知,在铝电解质中高质量分数的Li和K会对电解铝生产产生很大影响,造成电流效率下降,能耗升高,生产过程难于控制等危害,这种影响是持续性的,所以解决复杂铝电解质带来的问题已经成为我国电解铝行业的一个重要研究方向
加压技术在有色冶金反应和凝固方面的研究和应用取得了长足发展,部分加压技术的工业化已经处于成熟阶段。然而,由于钢铁材料冶炼温度较高,加压难度大,加压技术在钢铁冶金领域的研究与应用较少。在钢铁冶金领域,加压最典型的应用是提高钢液中气体元素氮的溶解度,强化其合金化效果,从而进一步提升钢铁材料的性能。近年来,加压技术在钢铁方面的研究主要集中在含氮钢,尤其是高氮钢的制备技术,但加压技术在含氮钢凝固组织演变和
连铸板坯角部横裂纹是影响高强微合金钢连铸坯质量及其连铸生产顺行的主要因素之一,本文以梅钢生产的高强微合金钢为研究对象,分析探讨了连铸坯角部横裂纹成因及其控制技术方向,研究了不同冷却工艺条件下试验钢种的高温热塑性能,并利用数值模拟技术研究揭示了不同连铸工艺条件下结晶器和二冷区内的坯壳凝固热/力学行为;在此基础上,进行了新型曲面结晶器锥度优化、铸坯二冷高温区晶粒细化控冷技术等研究,并进行了现场工业试验
近年来,稀土在耐热钢中良好的应用效果已得到国内外的一致认可,但稀土耐热钢的连铸生产仍面临诸多困难,严重影响工艺顺行和铸坯质量。由于添加稀土后钢液具有极强的还原性,在使用传统硅酸盐系保护渣进行连铸生产的过程中,结晶器内普遍存在较为严重的渣金界面反应,导致保护渣的成分明显变化,性能不断恶化,无法满足多炉连浇的工艺与质量要求。研究开发适用于稀土耐热钢连铸的新型保护渣势在必行。本论文在总结前人研究工作的基
连铸过程中,源起于结晶器内的铸坯表面缺陷严重影响了连铸生产效率和铸坯质量。结晶器内是一个包含流动、传热、化学反应以及相变等行为的复杂耦合体系,各行为相互影响、相互作用,难以准确预测和控制。本文通过结晶器内多相流动、传热与凝固全流程模型的开发为研究结晶器内的动态耦合行为提供了重要手段,该模型基于实际连铸工艺条件,描述了自开浇至稳定浇铸阶段结晶器内弯月面与渣膜的形成以及传热与凝固的连续演变特征,并进一