基于无监督学习的通信辐射源个体识别技术研究

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:hanfenng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通信辐射源个体识别(又被称为通信辐射源指纹识别)是通过测量发射机反映在信号上的差异对信号和发射机进行关联,在电子对抗中发挥着重要作用,是现代电子战中不可缺少的手段。本文主要研究无监督条件下通信辐射源个体识别,开展的主要工作如下:(1)将无监督学习引入到通信辐射源个体识别中,开展基于密度峰值聚类算法的通信辐射源个体识别方法研究。首先在双谱的基础上计算通信辐射源观测信号的直方图特征,提高其个体信息表征能力,其次计算每个特征样本的局部密度和相对距离构建决策图,最后依据中心点的特性在决策图上选择聚类(簇)中心点并给非中心点分配标签。该方法在实际采集的超短波电台数据集上的实验结果验证了该方法在没有任何先验信息条件下能够有效实现通信辐射源个体的无监督识别。(2)针对密度峰值聚类算法使用高斯核函数估计得到的样本点的密度与样本点实际密度相差较大的问题,提出一种基于改进核函数密度峰值聚类的通信辐射源个体识别方法。该方法首先基于热扩散方程估计核密度,在此基础上,通过改进的Sheather-Jones算法实现最佳带宽自适应选择。该方法可以改善密度估计结果,使其与数据点的真实密度更加接近。该方法在三种实际电台数据集上进行了实验,实验结果表明该方法的可行性与有效性。与其他典型聚类方法相比,该方法在实际采集的通信电台数据集上的实验结果表明该方法能够获得更优的分类识别性能。(3)本章提出了一种基于改进距离测度密度峰值聚类的通信辐射源个体识别方法。首先针对欧式距离不能充分表征复杂非线性通信辐射源观测数据内部结构的问题,引入测地距离作为两个观测样本点间的距离测度;针对密度峰值算法中的相对距离不能充分反映聚类中心点的问题,对原始密度峰值聚类算法第二个假设中的比较量进行重新建模,设计比较距离测度;针对密度峰值算法中参数dc的取值依赖用户主观经验的问题,引入局部密度信息熵实现参数自适应选择。在实际采集的通信电台数据集上的实验结果表明,该算法的性能明显优于其它聚类方法,在实际采集的超短波电台数据集和krisun电台数据集上的识别率分别达到78.6%和80%。(4)针对现有的方法仅仅局限于通信辐射源个体的静态识别问题,即新出现的通信辐射源个体无法有效识别的问题,设计了基于增量模型的通信辐射源个体识别框架。该模型以增量密度峰值聚类算法为基础实现增量学习,以聚类的结果作为先验信息构建KNN分类器的训练集,对数据进行二次分类。实验表明该模型在面对新出现的通信辐射源个体观测样本时,该方法能够有效利用历史数据信息和有限训练样本解决未知类的通信辐射源个体识别问题。
其他文献
建设海洋强国是全面建设社会主义现代化强国的重要组成部分,海洋大数据作为基础战略资源,是衡量一个国家海洋监管能力的重要标志,随着信息技术的迅猛发展,以卫星海洋遥感数据为代表的海洋数据规模呈现爆炸式增长趋势,海洋研究进入大数据时代,如何收集、管理和挖掘海洋数据是世界各海洋强国研究的重点方向。本文以国防科技大学研制的天拓三号卫星收集的天基AIS数据作为数据支撑,结合机器学习相关算法,从分类、聚类和回归三
尽管现在的强化学习技术比较成熟,但是由于训练过程无任何先验知识,随着任务复杂度提高,训练时间也随之增长,这就限制了强化学习技术应用的任务场景。因此,将相似任务的训练结果作为先验知识模型提供给新的强化学习任务,从而解决强化学习对大量训练样本的依赖问题,提高强化学习算法的可用性和普适性,具有重要的理论意义和实际意义。针对上述研究点,本文开展了以下研究与创新:(1)提出基于先验知识模型的策略迁移方法,降
在大数据时代,深度学习在图像分类、语音识别、机器翻译等多种任务上取得了令人满意的表现,这与数据的规模、质量息息相关,更多高质量的数据可以使深度神经网络模型的性能得到极大提升。但现实条件下,只有少数机构有能力收集大规模数据,大部分机构只能掌握少量数据。面对专业领域性强、隐私要求高的数据,机构间往往不愿共享数据,且由于受到数据隐私保护相关法律法规的监管,直接传输原始数据难以实施。为了打破机构间的数据壁
故障诊断与安全监测对微加速度传感器提出了迫切需求,然而,目前在市面上主要以高精度、低量程产品为主,产品量程和部分性能不能有效满足故障诊断和安全工程领域的监测需求。本文在前期研究基础上提出一种高谐振频率、高量程、体积小、性能稳定的蝶翼式微加速度传感器。从敏感结构设计与优化、加工工艺、集成封装、主要性能测试等方面进行了系统研究,内容主要包括以下几个方面:1.敏感结构设计与优化。本文在保证主要性能指标的
随着计算机技术的飞速发展,人们对新软件的需求呈现爆炸式增长,但是现有软件的开发速度远远落后于人们对新软件的需求速度,为了缓解这种情况,代码自动生成技术应运而生。代码自动生成技术可以辅助开发人员进行软件开发,减轻开发人员的编码负担,缩短软件的研发周期,目前研究人员提出了许多代码自动生成方法。本文首先对当前代码自动生成技术和用于代码生成的神经网络架构的现状进行了分析,而后分析了目前基于深度学习的代码自
合成孔径雷达(Synthetic Aperture Radar,SAR)是利用微波进行感知的主动式传感器,其不受天气、光照等条件的限制,可对感兴趣目标进行全天时、全天候的观测,在军事和民用领域发挥了重要作用。飞机目标是战场侦察与监视的重要对象,具有高价值和时敏变化等特点,如何高效、准确地检测、识别飞机目标是SAR图像目标解译领域的重要课题,也是难点之一。当前,随着SAR传感器分辨率达到亚米级,基于
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)目前已成为人们获取非合作运动目标高分辨雷达像的常用手段,雷达像的分辨率越高,其展现的目标信息越丰富。针对传统ISAR分辨率增强方法的不足,本文重点研究用于ISAR分辨率增强的深度学习方法。所开展的研究工作和取得的研究成果如下:第一章回顾了国内外ISAR分辨率增强技术的研究进展,重点分析了目前已经广泛应用的各
随着自动控制技术的发展,民用无人机越来越广泛的应用给社会带了来许多便利,但也对个人、社会、军事等领域带来了严重威胁。因此,快速高效的低空无人机检测是应对无人机威胁的前提。本文利用红外与可见光波段的光电探测手段,结合深度学习技术,开展了对低空无人机目标图像检测识别算法的研究,主要工作内容如下:(1)基于深度学习的低空无人机检测识别算法优选。首先,利用红外与可见光采集设备与3型民用无人机构建了双波段无
随着智能家居机器人、无人驾驶、虚拟现实等新兴产业的爆炸式发展,对三维场景的语义分析与理解的需求也越来越紧迫。与此同时,空间扫描技术的越发成熟,三维传感技术也取得了重大进展,大量的真实场景三维点云数据的获取也越来越容易。为此,三维场景的语义分析也越来越受到数据的驱动。由于三维点云数据的无序性,基于卷积神经网络的深度学习方法不能直接作用于点云上,而将点云数据转换为体素,采用三维卷积方法的计算开销太大,
作业减负,关键在于消除学生的作业焦虑,提升其学习主动性。这就需要打开作业“黑箱”,将作业纳入学习过程之中,让学生参与到作业评价中来。作业设计可秉持评价标准共定、及时/持续反馈、作业前置及结果可视四项原则。教师可尝试重构作业设计思路,引导学生理解作业目标,与学生共同协商任务内容、商定评价标准,同时注重作业反馈,指导学生改进,让学习为作业提供支架,用作业改进学生的学习表现,使学习与作业一体发展,增强学