论文部分内容阅读
随着社会和科技的进步,人们对信息需求量越来越大,传统的电通讯方式正在让位于光纤通讯,DWDM(密集型波分复用)就是光纤通讯中很有前途的一种技术。作为DWDM的泵浦源,980nm半导体激光器的重要性是不言而喻的,而980nm半导体激光器同SMF(单模光纤)的耦合率则是在泵浦过程中关心的极为重要的一个课题。 由于生产工艺等原因,造成不同980nm半导体激光器个体的特性参数的不尽相同,而生产厂商给出的特性往往都只是一个典型值,如果用典型值来进行耦合效率的估算,必然造成很大的误差,从而对检验某种耦合方式的优劣性造成不良影响。就算是同一个半导体激光器个体,随着工作时间的增长,必然造成激光器工作温度的变化,从而进一步影响到激光器的输出功率等特性参数。用这样的激光器来进行高精度的耦合实验必然是一种灾难。 本文着重论述了利用NI公司的Labview虚拟仪器语言进行软件编制,并利用软件通过GPIB硬件接口对ILX公司的LDC3900半导体激光器电源进行实时监控的方法,通过对LDC3900半导体激光器电源的监控,从而保证了连接在该电源上的980nm半导体激光器能够长时间的工作在恒定的环境温度、恒定的工作电流、工作电压下,并保证了激光器能输出稳定功率的光束。通过对980nm半导体激光器特性参数的控制,从而向耦合实验提供了稳定的激光光源。 本文同时还探讨了处于空间任意位置的半导体激光器远场模场分布情况,建立了理论模型并描绘了处于某些特定位置下的半导体激光器远场光强分布曲线。该理论模型的建立为日后对980nm半导体激光器远场光强分布的探测工作奠定了基础并提供了一定的指导作用。同时,该模型也可以为980nm半导体激光器同SMF的耦合工作提供一定的指导,从而缩短耦合实验所需的时间。 需要指出的是,虽然本文是建立在980nm半导体激光器的基础之上,但本文的适用范围并不局限于980nm半导体激光器,本文对于半导体激光器具有普适性。