论文部分内容阅读
目前,低合金耐磨铸钢因合金成分含量低,综合力学性能好,生产方式灵活简便被矿山、钢铁、冶金等行业广泛应用,在国内金属耐磨材料行业发挥着重要作用。硅锰钢作为低合金耐磨钢,替代高锰钢做为拖拉机履带板,挖掘机斗齿等设备材料。随着工业化不断发展,设备要求不断提升,传统硅锰钢逐渐不能满足设备备件的使用需求。为了更好发挥其性价比高的优势,本课题以硅锰钢为基础,通过成分优化、工艺改进,开发新型Si-Mn系低合金铸钢,为企业衬板、斗齿等耐磨材料替代和产品升级提供一定技术支持。本文采用高纯合金原材料与工业纯铁或Q235钢配合熔炼试样,首先研究硫磷含量对Si-Mn系低合金铸钢组织及力学性能的影响。在此基础上,对中频感应炉进行炉底吹氩改造,研究熔炼后期加入吹氩处理工艺对Si-Mn低合金钢性能提升的作用。调整Si-Mn低合金钢中碳元素含量,研究Si-Mn低合金钢不同碳含量时的组织和力学性能,确定最优成分搭配。在确定成分和熔炼工艺后,进一步对Si-Mn低合金钢的热处理工艺进行研究,探索淬火温度和回火温度的变化对Si-Mn低合金钢组织和综合力学性能的影响。最后,通过冲击磨损和磨粒磨损实验,对比最优性能Si-Mn低合金铸钢耐磨性与高锰钢和高铬铸铁的优劣。研究表明:随着S、P含量的升高,低合金钢硬度变化不大,冲击韧性显著降低;熔炼后期对钢水炉底吹氩,低合金钢硬度提升较小,冲击韧性提高幅度较大;Si-Mn系低合金铸钢的硬度随碳含量的增加持续增加,达到0.4%C以后增长趋缓;冲击韧性在C含量0.33%时达到最优,后随着C含量增加显著下降,在C含量0.33%时组织以板条马氏体为主,另有部分残余奥氏体和下贝氏体分布,综合力学性能最好,硬度为HRc48,冲击值为Akv42J/cm2。热处理工艺实验表明,随着淬火温度的升高,试样硬度升高,冲击韧性下降。在890℃淬火时,试样综合力学性能最优;随着回火温度的增大,硬度下降明显而冲击值略有提高,综合力学性能在220℃回火时达到最优。Si-Mn系低合金铸钢的最佳热处理工艺为880℃正火+890℃淬火+220℃回火。冲击磨损和磨粒磨损实验表明,Si-Mn系低合金铸钢硬度优于高锰钢,韧性优于高铬铸铁,组织致密,耐磨性在冲击环境或磨粒磨损环境下都表现较好。该Si-Mn系低合金铸钢成本降低,热处理工艺简便,综合力学性能较好,可用于企业替代耐磨衬板、斗齿等传统材料,取得良好的经济效益。