论文部分内容阅读
衍射光学元件独特的光学性质用于成像光学系统可以在提升成像质量的同时简化结构,在军用、商用成像领域得到了广泛应用。单层衍射光学元件结构简单、厚度小、成本低,然而,单层衍射光学元件在入射波长远离中心波长后衍射效率明显下降,低衍射效率会严重影响成像质量,致使其无法应用于宽波段成像系统。近年来,计算成像技术飞速发展,该技术可以解决传统光学方法无法解决的问题,同时易于实现系统小型化。本文提出了衍射计算成像宽波段光学系统,使用光学-数字联合设计的方法减小低衍射效率对成像的影响,针对中波、长波宽波段应用范围,研究了衍射计算成像双波段红外光学系统的设计方法,进一步研究了受温度及角度影响的衍射计算成像双波段红外光学系统。该方案为解决单层衍射光学元件宽波段低衍射效率的问题提供了一种新的思路和方法,对实现单层衍射光学元件宽波段应用以及宽波段成像系统小型化、轻量化具有重要意义。本文首先研究了衍射计算成像的理论基础,讨论了单层衍射光学元件的衍射效率特性,分析了其独特的色散特性、温度特性以及初级像差特性;以图像退化模型为基础,讨论了多种常用的图像复原方法,并分析了常用的快速迭代算法;讨论了图像评价方法中的主观评价方法以及多种客观评价方法。本文基于对衍射特性以及复原特性的联合分析,提出了衍射计算成像双波段红外光学系统的设计方法,该方法将单层衍射光学元件中心波长设计在中波以保证中波的成像质量,长波通过本文构建的受衍射效率影响的点扩散函数(Point Spread Function,PSF)模型进行图像复原,从而使双波段都能够高质量成像。设计了含有单层衍射光学元件的中波、长波双波段制冷红外系统,系统焦距200mm、F数为2、视场3.6°,进行了长波图像的复原,对结果进行了评价。结果表明该设计方法可以减弱由于低衍射效率造成的模糊,扩展了单层衍射光学元件的波段应用范围。环境温度的变化会对衍射计算成像双波段红外光学系统产生影响。本文研究了最大化温度-带宽积分平均衍射效率的单层衍射光学元件设计方法,并提出了将温度积分平均衍射效率代入PSF模型;同时基于红外辐射特性,提出了将修正的温度波长权重代入PSF模型。设计了含有单层衍射光学元件的中波、长波双波段制冷红外-40~+60℃无热化系统,系统焦距200mm、F数为2、视场3.6°,进行了图像复原及评价,并与传统无热化设计方法进行了对比。结果表明该方法可以减小温度对衍射计算成像双波段红外系统的影响,简化了双波段红外光学系统无热化的结构。入射角度及视场角度的变化会对衍射计算成像双波段红外光学系统产生影响。本文研究了最大化入射角度-带宽积分平均衍射效率的单层衍射光学元件设计方法,并提出了将入射角度积分平均衍射效率代入PSF模型;推导了视场角度对PSF模型的影响,提出了衍射多级权重优化设计方法,将空间变化复原问题简化为空间不变复原问题。设计了含有单层衍射光学元件的中波、长波双波段制冷红外系统,系统焦距50mm、F数为2、视场14.4°,进行了图像复原及评价,并与传统设计方法进行对比。结果表明该方法可以减小入射角度及视场角度对于衍射计算成像双波段红外光学系统的影响,扩展了衍射计算成像双波段红外光学系统的角度应用范围。