论文部分内容阅读
粤北长江铀矿区是华南五大铀矿田(相山、桃山、诸广、下庄、苗儿山)中诸广铀矿田的重要组成部分,矿区位于南岭成矿带中东段诸广山岩体的东南部,是华南花岗岩型铀矿最为重要的产地之一。目前区内已探明储量的铀矿床有6个(书楼丘、棉花坑、油洞、长坑、长排、水石)以及若干个铀矿点,其中棉花坑铀矿床是矿区开采深度最深、华南规模最大、最典型的花岗岩型铀矿床。
本文以长江铀矿区棉花坑铀矿床为研究对象,利用偏光显微镜(PLM)、扫描电镜(SEM)、能谱仪(EDS)、电子探针(EPMA)、X射线荧光光谱仪(XRF)、电感耦合等离子质谱仪(ICP-MS)等现代分析测试技术对矿床的代表性岩矿石样品进行了岩相学、精细矿物学、主量、微量和稀土元素地球化学分析,结合质量平衡计算方法、酸碱热液蚀变理论等探讨了矿床典型矿化蚀变剖面组分特征及迁移规律,对绿泥石的成因矿物学、“红化”蚀变的机理、萤石的矿物学及元素地球化学、热液蚀变与铀成矿的关系等方面进行了系统研究,主要得到以下成果:
(1)棉花坑铀矿床围岩蚀变发育,蚀变带具有明显的水平分带特征,对该矿床-150m中段典型的横向矿化蚀变剖面进行了研究,该蚀变剖面在横向上可分为新鲜花岗岩带(Ⅴ带)、远矿碱交代蚀变带(Ⅳ带)、近矿绿泥石化蚀变带(Ⅲ带)、矿旁水云母化蚀变带(Ⅱ带)和矿化中心赤铁矿化蚀变带(Ⅰ带)。主要蚀变类型及生成顺序为成矿前碱性长石化→成矿期绿泥石化-伊利石化/水云母化-赤铁矿化→成矿期后碳酸盐化;其中绿泥石化、水云母化和赤铁矿化蚀变能促进成矿元素的聚集,水云母化和赤铁矿化的叠加对铀成矿更为有利。
(2)棉花坑铀矿床横向矿化蚀变剖面从侧缘碱交代带→矿化中心带,SiO2的带入率(0.27%→0.21%→0.50%→0.70%)整体上与U的带入率(4.73%→8.07%→39.26%→98.29%)呈正比,K+、Na+相互排斥呈现“钾钠不相容”现象,MgO、MnO呈现出“此消彼长”的迁移特征,是对流平衡迁移方式的表现。Th、Pb、Cs、Mo、As元素在矿化中心带的带入率最大,Ba、Sr、Co、V元素在矿化中心带迁出率最小,这对铀成矿(铀矿化)具有很好的指示作用。
(3)对棉花坑铀矿床中的绿泥石进行了成因矿物学研究。从形貌特征和成因特征等方面对棉花坑铀矿床中的绿泥石进行了分类,它们分别为Chl1-长石蚀变型、Chl2-黑云母蚀变型、Chl3-脉型、Chl4-粘土矿物转变型以及Chl5-与铀矿物密切共生型绿泥石;其中,Chl1、Chl2代表铀成矿前期的绿泥石,Chl3、Chl4代表铀成矿期早阶段的绿泥石,Chl5代表主成矿阶段的绿泥石。根据电子探针测试的绿泥石成分,采用了国际上较新且比较合理的分类方案对棉花坑铀矿床中的绿泥石进行了结构分类和命名,认为矿床中各成因类型绿泥石均为I型-三面体铁绿泥石(鲕绿泥石)。探讨了各类型(各期次)绿泥石的形成环境,认为从铀成矿前期→铀成矿期早阶段→主成矿阶段,各成因类型绿泥石的形成温度(平均值251.6℃→236.7℃→213.5℃)、氧逸度([lg(?O2/10-5Pa)]平均值-42.0→-42.5→-43.8)、硫逸度([lg(?S2/10-5Pa)]平均值0.6→-0.9→-4.2)呈现持续下降的演化规律,指示了矿床热液流体向低温、低氧逸度、低硫逸度的还原环境演化,暗示了铀成矿环境为中低温、相对酸性的还原环境。从成矿元素的地球化学行为和成矿元素的源-运-储过程等方面分析和归纳了绿泥石化对棉花坑铀矿床的成矿作用贡献,即绿泥石化通过改变铀的赋存状态、岩石的物理化学性质以及铀载体的物理化学平衡等方式共同为铀成矿作用提供了有利的矿源、运矿、储矿条件。通过对绿泥石成因矿物学的研究,进一步证明绿泥石是反演铀成矿环境重要、有效且可靠的标型矿物。
(4)对棉花坑铀矿床“红化”蚀变进行了精细矿物学研究。本文认为在未进行物相分析的情况下,把“红化”蚀变简单的等同于或归因于赤铁矿化是不严谨的,属于狭义的“红化”。铁的(氢)氧化物或者Fe3+是最主要的致色矿物或致色阳离子,是岩石变红的重要因素;矿物中存在的大量孔隙(原生孔隙和次生孔隙)为“红化”蚀变中致色矿物的聚集提供了场所,是“红化”蚀变的必要条件;绢云母和粘土矿物(伊利石/水云母)本身有可能作为岩石“红化”的致色矿物,同时它们具有一定的吸附性,在一定程度上对其他致色矿物(铁的氢/氧化物和铬、锰氧化物)起到了的载体作用和吸附作用,为其他致色矿物的运移和聚集提供了有利条件;过渡族金属氧化物(特别是元素周期表中第Ⅳ周期的过渡族元素Cr、Mn、Ti、Co等)以及它们的阳离子(Cr3+等)与Fe3+、Al3+的类质同象替换造成了“红化”蚀变的复杂性和多样性。因此,热液铀矿床中的“红化”现象并非由单一因素引起,而是在矿物中的孔隙、铁的(氢)氧化物、绢云母和粘土矿物以及过渡族金属氧化物及其阳离子等多种因素耦合作用下的结果。
(5)对棉花坑铀矿床中的萤石进行了矿物学及元素地球化学研究。棉花坑铀矿床产有三类萤石,它们分别为形成于铀成矿期主成矿阶断的紫黑色萤石、形成于铀成矿期成矿晚阶段的紫色萤石以及形成于铀成矿期后的浅绿色萤石,这三类萤石均属于热液成因。紫黑色萤石和紫色萤石相似的稀土元素配分模式暗示了两者具有相同的物质来源,而浅绿色萤石的物质来源可能与紫黑色萤石、紫色萤石的物质来源不同。从铀成矿期至铀成矿期后,萤石弱的负Ce异常、明显的负Eu异常和U的含量以及这些参数的变化特征都指示了成矿环境由还原向氧化转化,成矿流体性质由还原向氧化演化。在研究棉花坑铀矿床萤石微量元素和稀土元素的基础上,结合长江铀矿区的成矿地质背景和类比邻近相似铀矿区成矿流体的研究成果,认为棉花坑铀矿床成矿流体源自富含U、Ba等元素的前寒武纪基底岩石或与其进行了较为充分的水-岩相互作用的可能性较小,成矿流体存在多源(地幔流体和大气降水)的可能性,相对于前寒武纪基底岩石而言,为一经历了深部循环的外来流体。
(6)根据棉花坑铀矿床各蚀变带元素的含量、比值及迁移特征,结合长江矿区的基础地质特征、铀的基本性质以及前人在同位素(C-H-O-S-Sr-Sm-Nd)等方面的研究成果,本文认为棉花坑铀矿床的成矿物质主要来源于赋矿围岩长江岩体,成矿流体在成分上富含挥发分和矿化剂(CO2、F、H2O等)、碱金属元素(K、Cs、Rb)和重稀土元素,性质上具相对高的氧逸度,其来源是地幔流体与经历了深循环大气降水的混合成因流体。挥发分和矿化剂(CO2、F、H2O等)的带入是矿床重要的矿质迁移机制,CO2的逸出伴随着氧化向还原过渡的环境是矿床重要的矿质沉淀机制。
本文以长江铀矿区棉花坑铀矿床为研究对象,利用偏光显微镜(PLM)、扫描电镜(SEM)、能谱仪(EDS)、电子探针(EPMA)、X射线荧光光谱仪(XRF)、电感耦合等离子质谱仪(ICP-MS)等现代分析测试技术对矿床的代表性岩矿石样品进行了岩相学、精细矿物学、主量、微量和稀土元素地球化学分析,结合质量平衡计算方法、酸碱热液蚀变理论等探讨了矿床典型矿化蚀变剖面组分特征及迁移规律,对绿泥石的成因矿物学、“红化”蚀变的机理、萤石的矿物学及元素地球化学、热液蚀变与铀成矿的关系等方面进行了系统研究,主要得到以下成果:
(1)棉花坑铀矿床围岩蚀变发育,蚀变带具有明显的水平分带特征,对该矿床-150m中段典型的横向矿化蚀变剖面进行了研究,该蚀变剖面在横向上可分为新鲜花岗岩带(Ⅴ带)、远矿碱交代蚀变带(Ⅳ带)、近矿绿泥石化蚀变带(Ⅲ带)、矿旁水云母化蚀变带(Ⅱ带)和矿化中心赤铁矿化蚀变带(Ⅰ带)。主要蚀变类型及生成顺序为成矿前碱性长石化→成矿期绿泥石化-伊利石化/水云母化-赤铁矿化→成矿期后碳酸盐化;其中绿泥石化、水云母化和赤铁矿化蚀变能促进成矿元素的聚集,水云母化和赤铁矿化的叠加对铀成矿更为有利。
(2)棉花坑铀矿床横向矿化蚀变剖面从侧缘碱交代带→矿化中心带,SiO2的带入率(0.27%→0.21%→0.50%→0.70%)整体上与U的带入率(4.73%→8.07%→39.26%→98.29%)呈正比,K+、Na+相互排斥呈现“钾钠不相容”现象,MgO、MnO呈现出“此消彼长”的迁移特征,是对流平衡迁移方式的表现。Th、Pb、Cs、Mo、As元素在矿化中心带的带入率最大,Ba、Sr、Co、V元素在矿化中心带迁出率最小,这对铀成矿(铀矿化)具有很好的指示作用。
(3)对棉花坑铀矿床中的绿泥石进行了成因矿物学研究。从形貌特征和成因特征等方面对棉花坑铀矿床中的绿泥石进行了分类,它们分别为Chl1-长石蚀变型、Chl2-黑云母蚀变型、Chl3-脉型、Chl4-粘土矿物转变型以及Chl5-与铀矿物密切共生型绿泥石;其中,Chl1、Chl2代表铀成矿前期的绿泥石,Chl3、Chl4代表铀成矿期早阶段的绿泥石,Chl5代表主成矿阶段的绿泥石。根据电子探针测试的绿泥石成分,采用了国际上较新且比较合理的分类方案对棉花坑铀矿床中的绿泥石进行了结构分类和命名,认为矿床中各成因类型绿泥石均为I型-三面体铁绿泥石(鲕绿泥石)。探讨了各类型(各期次)绿泥石的形成环境,认为从铀成矿前期→铀成矿期早阶段→主成矿阶段,各成因类型绿泥石的形成温度(平均值251.6℃→236.7℃→213.5℃)、氧逸度([lg(?O2/10-5Pa)]平均值-42.0→-42.5→-43.8)、硫逸度([lg(?S2/10-5Pa)]平均值0.6→-0.9→-4.2)呈现持续下降的演化规律,指示了矿床热液流体向低温、低氧逸度、低硫逸度的还原环境演化,暗示了铀成矿环境为中低温、相对酸性的还原环境。从成矿元素的地球化学行为和成矿元素的源-运-储过程等方面分析和归纳了绿泥石化对棉花坑铀矿床的成矿作用贡献,即绿泥石化通过改变铀的赋存状态、岩石的物理化学性质以及铀载体的物理化学平衡等方式共同为铀成矿作用提供了有利的矿源、运矿、储矿条件。通过对绿泥石成因矿物学的研究,进一步证明绿泥石是反演铀成矿环境重要、有效且可靠的标型矿物。
(4)对棉花坑铀矿床“红化”蚀变进行了精细矿物学研究。本文认为在未进行物相分析的情况下,把“红化”蚀变简单的等同于或归因于赤铁矿化是不严谨的,属于狭义的“红化”。铁的(氢)氧化物或者Fe3+是最主要的致色矿物或致色阳离子,是岩石变红的重要因素;矿物中存在的大量孔隙(原生孔隙和次生孔隙)为“红化”蚀变中致色矿物的聚集提供了场所,是“红化”蚀变的必要条件;绢云母和粘土矿物(伊利石/水云母)本身有可能作为岩石“红化”的致色矿物,同时它们具有一定的吸附性,在一定程度上对其他致色矿物(铁的氢/氧化物和铬、锰氧化物)起到了的载体作用和吸附作用,为其他致色矿物的运移和聚集提供了有利条件;过渡族金属氧化物(特别是元素周期表中第Ⅳ周期的过渡族元素Cr、Mn、Ti、Co等)以及它们的阳离子(Cr3+等)与Fe3+、Al3+的类质同象替换造成了“红化”蚀变的复杂性和多样性。因此,热液铀矿床中的“红化”现象并非由单一因素引起,而是在矿物中的孔隙、铁的(氢)氧化物、绢云母和粘土矿物以及过渡族金属氧化物及其阳离子等多种因素耦合作用下的结果。
(5)对棉花坑铀矿床中的萤石进行了矿物学及元素地球化学研究。棉花坑铀矿床产有三类萤石,它们分别为形成于铀成矿期主成矿阶断的紫黑色萤石、形成于铀成矿期成矿晚阶段的紫色萤石以及形成于铀成矿期后的浅绿色萤石,这三类萤石均属于热液成因。紫黑色萤石和紫色萤石相似的稀土元素配分模式暗示了两者具有相同的物质来源,而浅绿色萤石的物质来源可能与紫黑色萤石、紫色萤石的物质来源不同。从铀成矿期至铀成矿期后,萤石弱的负Ce异常、明显的负Eu异常和U的含量以及这些参数的变化特征都指示了成矿环境由还原向氧化转化,成矿流体性质由还原向氧化演化。在研究棉花坑铀矿床萤石微量元素和稀土元素的基础上,结合长江铀矿区的成矿地质背景和类比邻近相似铀矿区成矿流体的研究成果,认为棉花坑铀矿床成矿流体源自富含U、Ba等元素的前寒武纪基底岩石或与其进行了较为充分的水-岩相互作用的可能性较小,成矿流体存在多源(地幔流体和大气降水)的可能性,相对于前寒武纪基底岩石而言,为一经历了深部循环的外来流体。
(6)根据棉花坑铀矿床各蚀变带元素的含量、比值及迁移特征,结合长江矿区的基础地质特征、铀的基本性质以及前人在同位素(C-H-O-S-Sr-Sm-Nd)等方面的研究成果,本文认为棉花坑铀矿床的成矿物质主要来源于赋矿围岩长江岩体,成矿流体在成分上富含挥发分和矿化剂(CO2、F、H2O等)、碱金属元素(K、Cs、Rb)和重稀土元素,性质上具相对高的氧逸度,其来源是地幔流体与经历了深循环大气降水的混合成因流体。挥发分和矿化剂(CO2、F、H2O等)的带入是矿床重要的矿质迁移机制,CO2的逸出伴随着氧化向还原过渡的环境是矿床重要的矿质沉淀机制。