论文部分内容阅读
永磁同步电主轴作为高精度数控机床的核心部件之一,在航空航天、汽车、精密仪器和模具加工等领域有着广泛的应用。自主开发高速高刚度的大功率永磁同步电主轴系统,对于我国在高档数控机床领域拥有自主知识产权和核心竞争力将起到至关重要的作用。
大功率永磁同步电主轴的高速化是数控系统发展的主要趋势之一,多年以来,国内外广大学者对此做了大量研究,但仍有许多理论和技术问题需要解决。本文以大功率永磁同步电主轴为研究对象,围绕如何提高其弱磁控制性能进行了深入地研究,涉及矢量控制、电流环控制策略、死区补偿算法、弱磁控制算法、速度环控制策略等问题。本文完成的主要工作有:
①概括总结了大功率永磁同步电主轴驱动系统的国内外发展现状与未来发展趋势,详细分析了永磁同步电主轴的数学模型、矢量控制策略和自抗扰控制理论,深入研究了永磁同步电主轴的弱磁控制策略。
②针对电流PI调节器存在的阶跃响应超调与跟踪速度之间的矛盾,提出了采用快速跟踪微分器为电流指令安排过渡过程的方法。仿真和实验结果表明:此方法使电流更快速、平滑地跟踪指令值,增强了电流控制的鲁棒性。
③针对由于电流PI调节器对dq轴电流解耦不彻底所导致的电主轴高速运行时易产生较大电流跟踪误差的问题,提出了基于电压前馈解耦的电流控制算法,通过在电压指令中增加前馈补偿以消除耦合项的影响。实验结果农明:该算法实现了对dq轴电流的完仝解耦,消除了电流跟踪误差,提高了电流控制性能。
④针对SVPWM死区效应所造成的逆变器输出电流波形严重畸变和零电流钳位现象,在传统电压前馈死区补偿算法的基础上,提出了一种改进型死区补偿算法。与传统算法相比,该算法具有计算量小、易于实现等优点。实验结果表明:该算法可以有效地改善输出电流的波形,消除零电流钳位现象,从而提高逆变器的输出性能。
⑤针对表贴式永磁同步电主轴在弱磁控制中随负载增大易产生速度响应动态过程电流震荡、速度稳态误差和稳态时速度波动变大的问题,在分析了传统超前角弱磁控制算法原理的基础上,将动态和稳态性能变差的主要原因分别归结于SVPWM逆变器电压输出能力不足和弱磁阶段采用的电压闭环控制,提出了一种改进型超前角弱磁控制算法。此方法使用一种运算量小的SVPWM过调制算法,同时采用以q轴电流误差闭环代替传统电压闭环的弱磁控制策略。实验结果表明:该算法可以有效地减小动态过程的电流震荡,避免加载时的稳态速度下降,且稳态速度波动小,从而提高了电主轴弱磁阶段的带载能力。
⑥针对弱磁调速时速度PI调节器抗负载突变和负载扰动能力差的问题,提出一种基于自抗扰控制器的弱磁速度环控制策略。仿真结果表明:相较于传统的速度PI调节器,该方法能够提高弱磁调速时速度环对负载变化的抗扰能力。
⑦构建了大功率永磁同步电主轴驱动系统的硬件平台,在此基础上完成了本文提出算法的软件设计与开发,并制作了样机。进行了大功率永磁同步电主轴的高速运行实验,验证了本文提出算法的可行性。