论文部分内容阅读
随着优质资源的日益稀少,水泥工业逐渐向利用低质燃料的方向发展,但局限于当前的水泥生产工艺水平,能够适应水泥生产的煤种范围比较窄,一般我国水泥工业中的大中型企业多使用优质烟煤,而在我国高硫煤储量丰富。为了拓宽水泥工业用煤的选择范围,本文结合干法水泥生产过程进行了水泥生料对高硫煤的燃烧脱硫理论研究,为高硫煤在干法水泥生产中应用提供理论依据。 本文通过固硫效率的测试、渣样的矿物组成分析及微观结构分析,对水泥生料的固硫行为进行了研究,结果表明,水泥生料本身具有很好的固硫效果,1300℃时固硫效率仍在86%以上。这是由于高温下形成了Ca5(SiO4)2SO4、3CaO·3Al2O3·CaSO4以及抑制CaSO4高温分解的熔融包裹物,使固硫产物不再以高温稳定性差的活性CaSO4的形式存在。添加BaCO3、SrCO3后,虽在较低温度下使水泥生料的固硫效率降低,但是随着温度的升高,水泥生料的固硫效果改善。 另外,本文还借助X-射线衍射仪和扫描电镜对高温稳定脱硫产物硫铝酸盐的生成机理及影响因素进行了研究。结果表明,3CaO·3Al2O3·CaSO4具有较好的高温稳定性,且较3CaO·3Al2O3·BaSO4、3CaO·3Al2O3·SrSO4更易形成控制,在1150~1450℃温度范围内都有3CaO·3Al2O3·CaSO4生成,随温度的升高,反应生成增加,1450℃时3CaO·3Al2O3·CaSO4开始分解;Al2O3的加入量对3CaO·3Al2O3·CaSO4的生成量没有影响:MgO、Fe2O3的存在促进了3CaO·3Al2O3·CaSO4在较低温度下形成,同时也使其分解温度提前;SiO2、Fe2O3的加入提高了CaSO4耐高温分解能力;BaO的替代对硫铝酸盐的生成不利;而SrO的替代,1400℃、1450℃时,有利于硫铝酸钙生成,随着SrO替代量增大,硫铝酸盐矿物形式为3CaO·3Al2O3·SrSO4或它们与3CaO·3Al2O3·CaSO4共存。