论文部分内容阅读
表面肌电信号(sEMG)是人体主动运动的时候,在肌肉的表面用表面电极采集得到的生物信号,它能够在一定程度上反映神经肌肉的活动。sEMG具有无创性、实时性、操作简单等优点,因此,它在多个领域获得越来越多的应用。通过提取sEMG信号的特征,借助于肌肉、骨肌生理学模型,来识别肌肉的运动状态和肢体的运动意图,以此控制智能设备是一种新的人机接口技术。目前,国内对这种人机接口方面的相关研究较少。本课题尝试在这方面做一些具体工作,并用其预测肘关节的运动趋势作为人机接口的实例。在分析了上肢骨肌系统生理结构的基础上,首先建立了上肢的肌肉模型、骨肌模型和运动学模型,在模型中,充分考虑了由于肌肉的粘性产生的被动阻尼力以及考虑了关节的滑膜、韧带等成分产生的整体被动力,使模型更加完整。对肌肉激活度进行了分析,给出了模型中主要参数的获取方法。分析了肌电信号的特点,选取了人机接口系统硬件,包括表面肌电信号传感器、数据采集仪和关节角采集设备。并进行了采集实验。对采集的表面肌电信号采用滤波、整流、包络的方法进行了信号特征的提取。采用Matlab/Simulink工具设计了仿真程序,获取了信号的激活度信息。利用Opensim仿真软件进行了生物模型的仿真实验,通过仿真计算得到了预测的肘关节角度,并与实测的角度进行了比较,对生物模型进行了进一步调节。对关节力矩、肌肉力、肌肉力臂、肌纤维长度等仿真输出结果进行了分析,结果与实测或其他文献的数据有对比性,进一步证实了所建模型的准确性。为了验证所设计的人机接口的正确性,设计了一款具有前臂屈/伸、前臂旋内/旋外的二自由度的康复训练机器人,并使用Pro/E软件建立了虚拟样机。此装置结构紧凑,肢体固定部分长度可调,安全,成本低。总重量为3kg,可以穿戴在患者身上。