论文部分内容阅读
人们的工作和生活越来越多地和计算机联系在一起,使得人类与计算机之间的关系越来越紧密。另外,各种各样的机器人也相继问世并且会越来越多地出现在我们的周围。人们渴望自然和谐的人机交互——计算机首先要识别主人的身份,然后判别主人的表情以做出相应的动作。因此,本文以快速准确的人机交互为目标,旨在研究如何提高基于人脸的身份识别与表情识别的识别率及识别速度。论文的主要研究工作与成果包括以下几个方面的内容:1)提出一种基于局部二元模式直方图映射(LBPHP)的快速人脸识别方法。此方法将局部二元模式直方图映射到保局投影(LPP)空间获得低维的LBPHP特征,在此低维特征空间判别新样本大大提高了识别速度,由于LPP强大的鉴别特性,此方法的识别率也很高,相比于传统的基于局部二元模式(LBP)的人脸识别方法,此方法不仅识别速度更快、识别率更高,尤其在大型人脸库上凸显其优势,适于此类人脸库上的实际应用如身份识别等。2)在表情特征提取方面,传统LBP算子存在不足:产生的直方图维数过长、鉴别力不高、对噪声反应敏感.针对此问题,提出中心化二元模式(CBP)算子。CBP算子相对于LBP算子具有三大优势:(1)CBP算子通过比较“近邻点对”之间的差异捕捉到梯度信息,不仅增强其鉴别能力而且大大降低特征维数。(2)CBP算子充分考虑中心像素点的作用并给它分配最高权重,此举大大提高其鉴别能力。(3)从图像中提取到的CBP特征在有噪声情形下更加鲁棒、更加稳定。此外,为提高识别结果,首次将中心最近邻分类器引入表情识别中,它的分类效能优于目前常用的最近邻分类器。3)为进一步提高人脸表情识别率,对中心化二元模式(CBP)做拓展:(1)将梯度信息融入CBP;(2)提出多尺度CBP(简称MCBP);(3)为增强算法对表情图像中细小变形的鲁棒性,首次引入图像欧式距离(IMED)并将其嵌入MCBP方法.嵌有IMED的MCBP(简称MCBP-IMED)方法提取出的特征具有优点:维数大大降低、很强的鉴别能力、对噪声不敏感、不易受细小变形的干扰。4)提出结合了CBP与Gabor变换的中心化Gabor(简称CGBP)直方图,并将梯度信息融入其中。为更好地反映表情流形的内在结构,提出融合了局部方法和有监督方法思想的有监督Laplacianfaces(简称SLAP)。另外,注意到人脸面部表情与人们情感表达的密切关系,提出一种融合了连续性与离散性的表情空间模型。基于此模型,将SLAP应用于融入梯度信息的CGBP直方图进行表情识别及表情成分分析。