论文部分内容阅读
碳化硅陶瓷基复合材料(CMC-SiC)作为一种新型战略性热结构材料,具有耐高温、耐磨损、抗热震、抗疲劳和抗蠕变等优点,在航天飞行器的热防护系统、航空发动机、火箭发动机、高性能制动以及先进核能等高温热结构部件上具有良好的应用前景。但CMC-SiC的硬度高且材料各向异性,属于难加工材料,常规切削加工(CM)技术难以实现其高精度、高质量、高效率的加工。因此,探寻一种新型加工技术来改善其加工性能具有重要的研究意义。激光辅助切削加工(LAM)技术可以降低切削力和切削能量、延长刀具使用寿命、提高加工表面质量。目前国内将LAM技术应用到CMC-SiC加工方向分支当中的科研人员寥寥无几。本文对CMC-SiC中的3D针刺编织碳纤维增强碳化硅(Cf/Si C)陶瓷基复合材料进行了激光辅助高速微车削温度场分析与试验研究,具体研究内容包括以下几个方面:首先,构建了CMC-SiC激光加热温度场数学模型和有限元模型。通过试验与仿真相结合的方式验证了模型的正确性,分析了不同激光功率密度和工件转速对CMC-SiC激光加热表面、切削层以及径向温度场分布的影响,为后续切削过程仿真参数设置以及切削试验工艺参数选择提供了理论依据。其次,构建了CMC-SiC激光辅助高速微切削有限元模型。在CM和LAM的基础上,进行了不同工件转速对切屑以及刀尖温度场影响规律的对比研究,将仿真分析结果作为激光辅助高速微切削试验温度场优化控制的依据。再次,依据温度场模拟仿真结果得出试验所用的工艺参数范围,开展CMC-SiC激光辅助高速微切削试验研究。基于CM和LAM两种技术条件,展开了不同工件转速、进给速度、切削深度、激光功率密度对切削力以及刀具磨损影响规律的对比分析,得出LAM可以有效降低切削过程中的切削力大小,改善刀具磨损。最后,对CM和LAM条件下各加工参数对CMC-SiC表面质量的影响规律进行了对比研究。分析了表面粗糙度、表面形貌、表面残余应力变化规律,得到LAM可以明显改善CMC-SiC切削后的表面质量,证明了LAM技术的可行性与有效性。通过对以上内容的研究,最终达到控制CMC-SiC激光辅助高速微切削温度场、优化工艺参数、提高加工表面质量、降低切削力、减少刀具磨损等目的。