论文部分内容阅读
白光有机发光二极管(WOLEDs)因其高效率、低功耗、自发光、柔性等优点,在固态照明领域有着广阔的应用前景。荧光-磷光混合型WOLEDs,兼具荧光材料的低成本、稳定性和磷光材料的高效率的特点,被认为是最理想的白光器件结构。为了实现该类器件的大规模商业化应用,需要进一步通过材料创新和器件优化等方法简化器件结构、提升器件效率、降低效率滚降、提高白光品质。混合型WOLEDs中的关键因素是蓝色荧光材料。蓝光材料的性质例如三线态能级,固态发光效率会直接影响器件结构和性能。本论文以高固态发光效率蓝色荧光材料为研究对象,开展了荧光-磷光混合型WOLEDs的结构设计和性能研究,致力于在简单的器件结构中实现高效率、低滚降、高品质的白光发射。主要的工作如下:1.蓝色荧光分子在聚集态下通常会发生荧光淬灭和光谱红移,需要采用掺杂技术制备器件,使得蓝光OLEDs和WOLEDs的结构复杂化,并常伴随着较大的效率滚降。针对这些问题,我们在经典蓝光基团蒽的9,10位连接聚集诱导发光(AIE)基团四苯乙烯和具有扭曲构型的三苯胺基团,得到了AIE分子TPAATPE。它在非掺杂薄膜中的发光效率可达82%。其非掺杂器件实现了纯蓝光发射,色坐标为(0.15,0.16),最大外量子效率为6.97%。进一步采用TPAATPE的非掺杂蓝光层,双极性的热活化延迟荧光(TADF)材料PTZ-B作为磷光染料的主体,得到结构相对简单的白光器件。当PTZ-B作为橙色磷光分子PO-01的主体时,双色白光器件实现了高效的暖白光发射,色坐标为(0.44,0.44),最大功率效率和外量子效率达69.5 lm W-1和25.2%。为了提高显色指数,通过使PTZ-B发挥红色磷光Ir(piq)3主体和自身绿光发射的双重作用,得到了三色白光器件,其显色指数可达92,色坐标为(0.34,0.38),最大外量子效率和功率效率达25.3%和47.3lm W-1。该工作为利用具有低三线态能级的蓝色荧光材料,制备高显色指数的混合型WOLEDs提供了新的思路。2.具有高三线态能级的蓝光材料用于混合型白光器件时,不仅能够提供蓝光组分,还可以作为磷光染料的主体,从而简化器件结构。除了高的三线态能级外,蓝色荧光材料还需要具有高的荧光效率、双极性传输性质以及良好的磷光主体性能。我们选择了两个具有高固态发光效率的菲并咪唑衍生物PPPIS和PPIDPS作为混合型WOLEDs中蓝光发射的主体。PPPIS和PPIDPS具有相似的分子结构,但是硫的不同氧化态使两个分子表现出不同的光物理性质。PPPIS具有弱电荷转移激发态性质,表现为深蓝光发射,而PPIDPS由于硫的氧化使其电荷转移激发态性质明显增强,光谱红移到了天蓝光区域。以PPPIS为蓝光发射主体的WOLED表现出更好的器件效果,最大功率效率和外量子效率分别为80.1lm W-1和27.2%。在亮度为1000 cd m-2时,外量子效率仍然能够保持在22.1%。3.我们对同样具有弱电荷转移激发态性质的菲并咪唑-联苯(PPIM)分子的器件性能进行了系统的研究。PPIM的非掺杂蓝光器件能够实现7.8%的外量子效率,色坐标为(0.153,0.068)。当其作为磷光染料的主体时,绿、橙和红光磷光器件的最大外量子效率分别能达到23.5%、30.8%和22.4%。在此基础上,双色(蓝-橙)白光器件最高可以实现28.5%的外量子效率和82.8 lm W-1的功率效率,并且在1000 cd m-2的亮度时,器件的外量子效率和功率效率仍然能保持在27.9%和70.3 lm W-1,效率几乎没有滚降。另外,通过在PPIM和PTZ-B层中低浓度掺杂红色磷光Ir(piq)3,三色白光器件实现了93的显色指数和24.2%的外量子效率。最后,与模型化合物对比发现,在菲并咪唑-苯(PPI)横轴位置上增加苯环能够使分子具有弱电荷转移态性质,提高发光效率,改善器件性能。4.芘并咪唑衍生物的非掺杂器件具有高亮度、高效率、低滚降的特点,但是由于大的π共轭平面,其电致发光光谱往往表现为天蓝光发射。借鉴第四章的工作,我们同样在芘并咪唑-苯的横轴位置上增加苯环,得到了芘并咪唑-联苯(PPy IM)分子。它在非掺杂薄膜中发光效率可达73.3%。其非掺杂器件能实现纯蓝光发射,色坐标为(0.160,0.128),最大外量子效率为7.6%,在5000 cd m-2的高亮度时,外量子效率仍然能达到7.2%,表现出很低的效率滚降。通过采用PPy IM的非掺杂蓝光层,以及PPIM作为PO-01的主体,实现了高效率、低滚降的WOLEDs。器件外量子效率和功率效率的最大值分别为23.5%和51.5 lm W-1。即使在5000 cd m-2的高亮度时,外量子效率仍然能够达到21.2%,仅有8%的效率滚降。而且,双发光层器件表现出很稳定的暖白光发射,1000 cd m-2亮度时的色坐标为(0.454,0.439),在400 cd m-2到10000 cd m-2亮度范围内色坐标变化值只有(0.004,0.003)。