论文部分内容阅读
目前高精度光纤捷联惯导广泛应用于武器与航天系统中,为了提高本公司中高精度光纤捷联惯导长时间纯惯性导航精度,本文主要研究了以下内容:高精度光纤惯导的系统误差模型、高精度光纤惯导中陀螺与加速度计的温度误差建模、高精度光纤惯导误差系数的精确标定方法。1.对光纤惯导的系统误差来源进行分析,推导惯导的系统误差模型,分析惯导系统在导航过程中产生的姿态、速度与位置误差的产生来源。2.对高精度光纤惯导中的陀螺误差模型进行分析,研究温度对惯导陀螺测量通道中零偏、标度因数误差的影响机理。分析不同温度模型对零偏温度漂移误差的补偿结果,建立了新的二维插值模型,利用温度与温变率完成了对零偏温度漂移误差的补偿。分析对比光纤陀螺标度因数的不同建模、补偿方法,得出了一种新的全温度全量程下的标度因数插值建模方法,完成了对标度因数的温度误差补偿。3.对高精度光纤惯导中加速度计测量通道的误差模型进行分析,研究得出温度对加速度计零偏、标度因数、安装误差产生的具体影响。通过对比传统的加速度计单一位置温度建模和系统级标定下的温度建模后,得出一种新的高精度加速度计多位置温度建模方法,优化了对加速度计零偏、标度因数、安装误差的温度误差补偿效果。4.对高精度光纤惯导标定技术进行研究,通过对分立式标定与系统级标定的深入研究,得出不同方法在惯导误差系数标定中的应用特点。对温度误差补偿后的惯导进行了标定技术研究,利用19位置的系统级标定方法完成了对惯导零偏误差、标度因数误差、安装误差的标定;同时研究了一种改进后的加速度计对称性的系统级标定方法,求解出包含加速度计正负标度因数在内的各项误差参数。