一些缩影特殊图式流形的同胚分类

来源 :河南大学 | 被引量 : 0次 | 上传用户:kinganguo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
拓扑学的主要任务是对拓扑空间进行分类,研究拓扑不变性质.1994年,刘亚星老师和李起升老师给出了图式流形的概念.本文通过扭转运算,对缩影特殊的图式流形(即每个顶点都有相同条数的边相连)的同胚类的计算给出一个简化计算的方法,并给出一些图式流形的分类结果。全文共分三章. 在本文的第一章,简要介绍了图式流形的发展历史,以及目前所取得的结果。 在本文的第二章,给出了本文所用到一些记号,基本概念,定义和定理。 在本文的第三章,首先给出了一个图式流形的负边分布的分类方法,然后给出一些图式流形的同胚分类的结果。
其他文献
本文在L2弱解估计的基础上,在Morrey空间和Campanato空间理论框架下,应用Stampacchia内插定理得到了一般二阶散度型线性抛物方程的W1,1p弱解的存在性和唯一性.
F.Burton Jones于1948年最早提出了集函数的概念,这包括K-函数,T-函数等,而且他本人对T-函数做了一些基础性的研究,得到了一些很好的结果,为其它集函数的研究提供了参考。后来又有
本文考虑了一类斑块环境下带有阶段结构的两种群Lotka—Volterra型捕食一食饵时滞模型并研究了模型的动力学行为,对它们的研究有重要的理论和实际意义. 首先,假设物种位于两
在工程实际中,动力系统总是存在滞后现象。从工程技术、物理、力学、控制论、化学反应、生物医学等中提出的数学模型带有明显的滞后量,且滞后是系统不稳定的重要因素。而中立型
关于度量空间中多个映象的公共不动点的存在性和唯一性问题,已被许多相关数学作者深入研究,获得了一系列有重要意义的结果。本文的研究内容分别涉及到广义度量空间、乘积度量空
幂零Leibniz代数是一类重要的Leibniz代数,自同构是Leibniz代数结构理论研究的重要方面.本文研究的是有限维幂零Leibniz代数中的一类二步幂零Leibniz代数N的自同构.现有的研究
本文研究扩散系数在线性抛物系统的近似能控和零能控的成本估计中的作用,我们给出关于扩散系数α(x,t)和时间T的成本的精确上界.应用上述估计,并且运用全局Carleman估计结合抛物方
在生命科学中,人们不断地探索物种之间的进化关系,而系统发生树成为描述这种进化关系最好的手段之一.随着许多物种的基因测序工程的完成和生物技术的发展,人类拥有了大量的生物
函数估计是非参统计中经常研究的问题,其中单调函数经常出现在经济和许多其他的学科中,例如:需求供应曲线,公司破产概率和持有危险资本的关系函数,表示小孩随时间生长模式的函数等