论文部分内容阅读
黄秋葵在我国深受广大消费者青睐,种植广泛,资源丰富。本研究以黄秋葵为对象,优化了黄秋葵多糖的提取工艺,并对粗多糖进行了分离纯化,较系统的研究了纯化后多糖组分的理化性质、部分结构特性以及抗疲劳生物活性,主要研究结果如下:(1)运用响应面法优化了黄秋葵多糖的提取工艺,确定了黄秋葵多糖的最佳提取工艺条件为:提取时间2.75 h、提取温度90℃、料液比1:10、pH 2.1。在此最佳条件下,黄秋葵多糖的得率为29.77%。将提取所得的粗多糖通过DEAE Cellulose-52离子交换柱层析进行了分离纯化,得到由蒸馏水洗脱所得的AEP-1和由0.3mol/L NaCl溶液洗脱所得的AEP-2两种多糖组分。(2)黄秋葵多糖AEP-1为白色絮状固体,AEP-2为淡黄色固体,均易溶于水,不溶于高浓度的乙醇等有机溶剂;不含有淀粉类、酚类物质,几乎不含蛋白质与核酸,而糖醛酸含量较高。红外光谱的结果确定二者都是具有吡喃结构的多糖类物质;HPLC分析表明AEP-1与AEP-2都是相对均一的多糖组分,AEP-1的分子量为5×103 Da左右,AEP-2的分子量为2×106 Da左右;AEP-1主要由6种单糖组成:甘露糖、鼠李糖、葡萄糖醛酸、半乳糖醛酸、葡萄糖和阿拉伯糖,其比例为1.0∶0.9∶3.5∶3.5∶11.7∶1.0;AEP-2主要由5种单糖组成:甘露糖、鼠李糖、半乳糖醛酸、葡萄糖和半乳糖,其比例为1.0∶8.0∶3.2∶1.2∶15.0。(3)采用甲基化与GC-MS仪器分析相结合的方法,初步分析了两种组分的连接方式:AEP-1中检出8种残基,分别为:T-Glcp1→,→4-Glcp1→,→3-Galp1→,→6-Glcp1→,→4-Galp1→,→2,4-Manp1→,→2-Araf1→和→2,4-Rhap1→;AEP-2中检出8种残基,分别为:→3,6-Galp1→,→2-Rhap1→,T-Galp1→,TGlcp1→,→6-Glcp1→,→4-Galp1→,→2,4-Manp1→和→2,4-Rhap1→。(4)通过动物实验研究了黄秋葵多糖的抗疲劳活性:黄秋葵多糖对小鼠的体重无显著影响;黄秋葵多糖能显著增加小鼠的负重游泳时间(8.1-148.2%),降低运动后小鼠的血乳酸(12.9%-40.0%)及血清尿素氮含量(6.6%-24.5%),提高其肝糖原含量(25.6%-102.4%),且与剂量之间存在显著的相关性。综合比较所以动物实验结果,AEP-1的抗疲劳活性强于AEP-2,显著强于粗多糖;AEP-1和AEP-2可能是黄秋葵多糖中的主要抗疲劳物质,AEP-1抗疲劳作用更强的原因可能是分子量小有利于机体吸收或在机体内发生作用,糖醛酸类成分对抗疲劳功能中有明显作用。