对抗网络中安全的分布式自适应扩散估计算法研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:zkw8229630
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着无线网络的应用、芯片集成度的提高与计算能力的增强、以及信号处理技术的进步,基于无线传感网络(Wireless Sensor Network,WSN)的分布式信息处理技术受到学者与产业界的关注,成为了研究热点。分布式自适应算法因结构简单且易于实现的特性,被广泛地应用于解决分布式参数估计的问题。分布式自适应网络是由一组具有数据处理和通信能力传感器节点组成,通过自适应算法和节点间协作进行目标参数的估计。但是,由于网络开放性和节点间的协作特性,分布式信息处理易遭遇网络攻击,其中错误数据注入攻击(False Data Injection Attack,FDIA)是最典型的攻击之一。对抗网络是指存在攻击者的网络,当网络遭遇错误数据注入攻击时,网络中的节点将不能正确地执行参数估计任务,从而得到一个错误的目标参数估计结果。因此,论文研究分布式网络中的安全分布式自适应估计算法。论文首先分析了错误数据注入攻击对扩散最小均方(Diffusion Least Mean Square,DLMS)算法的估计性能的影响,推导了对抗网络环境下稳态均方偏移(Mean Square Deviation,MSD)的表达式。研究结果表明,传统的DLMS算法在有恶意节点发起攻击的情况下估计性能会严重恶化。针对存在错误数据注入攻击条件下DLMS算法估计性能严重恶化的问题,论文提出了一种基于自适应聚类的安全DLMS(Adaptive-Clustering-based Secure DLMS,ACS-DLMS)算法。在所提出的ACS-DLMS算法中,节点在接收到邻居节点的非协作估计值中找到一个可靠的参考值,设计了一种以最小化瞬时MSD为目标和以参考值为基准的自适应聚类融合准则。为了使算法对错误数据注入攻击有更好的鲁棒性,提出了一种基于最小化节点本地代价函数的数据丢弃策略。仿真结果表明,ACS-DLMS算法在对抗网络中有良好的估计性能,较好地实现了安全性和估计精度的折中。为了解决自适应聚类融合策略在对抗网络中收敛速度较慢的问题,论文提出了一种基于信任机制的安全DLMS(Trust-based Secure DLMS,TS-DLMS)算法。在所提出的TS-DLMS算法中,节点利用本地非协作估计值构造阈值检测邻居节点数据是否存在异常,并设计了一种自适应阈值更新规则。同时,为了更好地跟踪节点的行为,减小虚警检测对估计性能的影响,提出了一种基于异常数据检测结果和数据偏差的信任评价机制,并依据邻居节点的信任值相应地调整融合权重。仿真结果表明,在错误数据注入攻击下TS-DLMS算法有更好的稳态估计性能,且鲁棒性较好。论文提出的两种分布式自适应扩散估计算法,有效地阻止了错误数据在网络中的传播,在存在错误数据注入攻击的对抗网络环境中有较好的应用前景。
其他文献
近年来,人工智能特别是深度学习技术在模式识别、场景感知和任务决策等方面取得了突出的效果和成绩。与此同时,边缘计算和设备如嵌入式终端等的发展也带来了更高的数据处理和计算需求。深度神经网络出色的数据特征提取和分析能力在边缘计算场景有着广泛的应用前景。然而,深度神经网络的复杂度严重限制了其在资源有限的边缘计算场景下的部署和应用。因此,如何有效地降低深度神经网络的复杂度是本研究的重点问题。首先,本研究从深
随着我国技术的发展以及医疗保障体系的完善,基于人工智能和大数据的临床决策支持系统逐渐成为满足人民健康需求的重要工具。本文基于合作单位浙江省立同德医院的实际需求,围绕慢性肾脏病的预测和药物不良反应识别展开研究。第一项研究从浙江省立同德医院收集了2213名病人的电子医疗记录,其中639名病人发展为慢性肾脏病。然后,本研究提出MD-BERT-LGBM方法建立预测模型,并与现有的其它机器学习方法进行比较。
智能卡设备作为一种保障用户信息安全的产品,其内部实现的密码算法都是满足理论安全要求的商用密码算法,如DES,AES,RSA等,以确保恶意攻击者无法获取内部的关键信息。这些密码算法都是经过了一系列理论验证和筛选,以及传统密码分析方法实际攻击后被证明安全的算法。但是,这些密码算法实现在具体的物理设备上时,设备运行过程中的泄漏信息提供了关于设备中关键信息的先验知识,使得攻击者能够通过旁路攻击这种手段恢复
电弧故障已逐渐成为住宅建筑电气火灾事故的主要成因之一。由于电弧故障拥有因其复杂、随机和不确定等特性,传统的空气开关断路器无法及时响应切断电源并因此失效。针对这种情况,本文对电弧故障特征进行了初步分析。提出了基于时间片的电弧故障特征检测算法,结合该算法和离散小波变换(Mallat算法),实现了一个数字硬件检测电路。该电路与高速ADC一起协同工作,对电弧故障信号进行分析和计算,克服了传统MCU软件实现
水声传感网络(Underwater Acoustic Sensor Networks,UWASNs)是探索、观测及利用海洋的重要基础设施,媒体接入控制(Medium Access Control,MAC)协议是其中的关键技术之一。MAC协议负责分配信道资源,保证网络节点尽可能合理地共享信道。论文以数据收集为应用场景,研究水声传感网络的MAC协议。针对现有协议存在多应用适应或分区域服务质量(Qual
用户的用水类型是供水企业对用户用水收费的重要标准。用户用水类型标签作为供水企业对用户定价的关键凭证,在用户的用水类型申报、供水企业的运营减负及利润保障上起着极为重要的作用。然而随着供水产业改革以及用户规模扩大,用户用水标签错标、标签无法随用户用水性质自动更新等问题日益加剧。供水企业客户基数大、用户长期流动、变动频繁,同时运营资金投入少、人工维护困难等问题使大数据量下用水用户标签的更新和清洗难以实现
鱼类及其相关产品是人类饮食食谱上蛋白质的重要来源之一,渔业的健康发展与人们的生活密切相关。优良的鱼种资源是渔业可以持续健康和快速发展的基础,育种和优选是渔业养殖过程的关键环节。鱼苗的优选除了依靠一些生化指标外,鱼苗的表型数据也是鱼种优选的重要参考指标。目前鱼育种的研究机构多采用人工测量方法获取鱼苗的表型数据,这个过程费时费力且易出错,同时难以获得全面的表型数据。为了帮助研究人员快速准确的测定鱼苗的
敏捷成像卫星具有较强的姿态机动能力,相比于普通成像卫星具备沿俯仰轴侧摆的能力,对于地面观测目标可产生更长的可观测时间窗口。随着敏捷成像卫星应用领域的不断扩大和用户任务需求的不断增加,如何对输入的用户任务序列进行规划,制定出合理有效的任务执行序列,充分发挥敏捷成像卫星的运行效率,对实现敏捷成像卫星在轨运行的自主化、智能化具有重要的意义。本文围绕敏捷成像卫星任务规划问题,建立了带有时间窗口约束的敏捷卫
近年来,由于计算机算力的快速发展,深度学习(Deep Learning,DL)算法已经成功地应用于各式各样的场景中。其中,卷积神经网络(Convolutional Neural Network,CNN)的提出使得图像领域的许多复杂问题得到了解决,例如图像分类、图像分割等问题。然而,对于一个分类任务而言,一个模型在某个数据集上表现出色并不代表其在其他数据集上表现同样出色。随着数据量的急剧增长,神经网
近年来,智能手机相机已经成为人们日常生活的必备工具之一,获取高质量的照片也逐渐成为了人们追求的目标。然而,在诸如夜晚或者照明昏暗的低照度场景下,相机捕获到的图像往往存在噪声大、对比度低,细节和色彩大量丢失的问题。这不仅会严重影响人眼的视觉效果,还会影响很多计算机视觉相关的应用,如人脸识别和安防监控。本文的研究目的是针对低照度图像进行去噪和对比度增强算法的研究。基于深度学习算法和一些经典的低照度图像