论文部分内容阅读
正品贝母资源匮乏,价格昂贵,药用价值高,难以满足临床的需要,因而市场上伪品较多,存在以次充好、以假乱真的问题。而在真伪鉴别的过程中,贝母类药材来源复杂,种类繁多,各种类之间具有不同的外形特征,常人难以辨认,因此如何有效准确的鉴别贝母就变得极其关键。目前,鉴别贝母主要依靠传统性状鉴别、显微鉴别、理化鉴别等方法,传统性状鉴别主观性较强且对操作人员的实践经验要求较高;显微鉴别以观察淀粉粒的显微结构为主,需要破坏样本;理化鉴别预处理工作繁琐,成本较高。本文采用深度学习方法提取贝母外形特征从而达到分类鉴别的目的。为此,本文进行了以下工作:(1)采集贝母样本并进行数据预处理,建立了首个多视角下的贝母图像标准数据集;(2)采用传统机器学习算法实现了贝母的分类,证明了计算机视觉在贝母分类识别上的可行性;(3)引入深度学习方法,基于单视角实现了贝母鉴别分类;(4)为建立更为精准的分类模型,并更好地应用于实际应用场景中,融合多个视角贝母图像,实现了多视角贝母的鉴别分类。通过以上工作,本文建立了一套完整的基于深度学习的贝母真伪鉴别平台,实现从数据输入到贝母分类的自动化流程,提升识别效率,识别精度可达84%以上,为中草药行业中贝母分类提供一种新的思路和解决方案;同时本文的思路可以推广到其它中草药的鉴定和识别上,从而为中草药行业实现批量自动化鉴定中草药奠定基础。