基于Android的综合无人售货机系统的设计与实现

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:lixiangzone119
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来新零售概念十分火热,多方行业巨头针对这一革新在国内展开布局,但当下中国的无人零售市场还处于初期发展阶段,没有达到规模化、秩序化,其中无人超市作为新零售的尖端产品始终没有一套统一而完善的解决方案,反而无人售货机相对来说可以更容易实现无人超市的部分功能和体验,仍然拥有很高的提升空间,但是现阶段市场反馈差强人意,存在很多问题,开发一款新型的拥有更高兼容性、更大发展空间、更智能人性的无人售货机势在必行。本文提出了一套成体系的新型无人售货机解决方案——基于Android的综合无人售货机系统,它包括下位单片机控制系统、上位终端系统和服务端中心管理系统三部分设计。重点解决传统无人售货机商品品类单一、货损率高、故障维护成本高的缺陷,并取得突出效果。下位单片机控制系统采用ATmega64芯片作为CPU设计开发功能控制板,完成了各控制板的CPU周边电路、通信电路和重点功能电路的设计,并制定了通信协议,可以集中管理所有外设,直接驱动外设工作并收集、记录外设信息,通过RS-485总线与上位终端系统进行数据交互,具有较好的抗干扰能力、稳定性和安全性。上位终端系统是设计研究重点,在Android板上开发运行,用于控制终端机器全部运行工作,完善了传统无人售货机的运作方式,完成了数据库、人机交互和运行管理的主要模块开发,并重点设计了故障处理方案和基于改进Vi Be算法的辅助监控模块,能在适配多品类商品集中售卖的同时减少货损率,并有效降低故障维护成本。服务端中心管理系统基于B/S架构实现了终端监管、数据统计分析、交易处理和系统管理四大功能模块的开发,设计了基于RBAC的权限管理,基于AOP的日志管理,基于加解密、鉴权的安全管理和完善的异常管理,可以协助终端机器完成工作,监控、处理和分析数据,并提供web管理页面供运营人员使用。
其他文献
随着城轨列车技术的发展,地铁成为人们日常生活中不可或缺的交通工具,为保证人们出行安全,地铁的安全性不容忽视。车底状态检测是地铁检测的重要环节之一,但地铁段检、厂检会存在漏检情况。当前国内还没有一套完整的地铁底部复现技术和基于图像自动检测技术,因此本文对地铁底部做了相应的研究。主要工作内容如下:(1)对地铁底部图像拼接与关键部件螺栓检测系统进行总体架构设计,在需求分析的基础上,确定系统架构、系统工作
随着机器视觉的发展与应用,将视觉检测技术运用于工业场景中已经成为智能制造业的热潮。钢水浇筑在生产过程中,存在很多不可控的质量问题,在制造过程中会出现部分划痕、形变等瑕疵,而操作人员需要近距离判断检测浇筑钢爪的合格与否,这样的检测方式效率过低。为此本文分析和应用了基于深度学习的目标检测框架进行训练,实现形态各异、多角度的钢爪识别与检测。论文主要完成以下工作:(1)分析了本文检测目标的实际环境和需求,
近年来,随着高清视频采集设备在生活中的普及,单目相机的数据量得到了迅速的增长。如何处理这些数据,从中获得有价值的信息,是计算机视觉领域的一个重要问题。数据中的人物姿态与行为,因其具有巨大的潜在商业价值,成为研究者重点关注的对象之一。近年来随着深度卷积神经网络在多个计算机视觉任务上取得的突破,行人检测、人体姿态估计、动作识别等与人相关的任务也受到越来越广泛的关注。本文聚焦于单目彩色图像数据中的二维人
情感分析是对文本中表达的评论、情绪和情感进行的计算研究。近几年来,情感分析引起了业界和学术界的广泛关注。在世界各地,社交媒体已为人们提供了以母语共享个人观点的趋势。对于这些评论的情感分析,机器学习算法是研究者的主要选择。在提出了复杂的机器学习算法和硬件升级版本来运行实验之后,研究界开始转向利用深度学习完成情感分析任务。过去五年的背景研究证实,深度神经网络(CNN、RNN和扩展版LSTM)取得了显著
无人机相较于固定监测设备有着价格低廉、部署方便、机动灵活等优势,在智能交通信息采集方面具有广阔的应用前景。为此本文在普通城市道路的复杂路况背景下,以YOLOv3算法为基础,对于航拍视角下车辆目标与跟踪技术进行研究,在降低计算资源、加快速度和增强精度等方面做出针对性改进。在车辆检测方面,为了改善YOLOv3算法在航拍车辆检测上的应用效果,本文提出了YOLOv3-Aerial航拍车辆目标检测算法,对默
惯性约束聚变(Inertial Confinement Fusion,ICF)是一种通过采用高功率激光或离子束辐照氘氚燃料靶丸,在惯性约束情况下达到点火条件,得到大量聚变能的方法。目前中美等国都在从原理性研究向工程化推进,其中每一个细节均需要精雕细琢。靶丸作为关键性部件,表面存在任何凸起、灰尘等孤立缺陷,均可能导致聚变时产生非对称内爆甚至壳体破裂,造成巨大的损失。为实现靶丸全表面缺陷高精度、高效率
在武器系统的日常测试中,需要根据系统中的各类数据对系统的性能做出评价。将武器系统中的各类数据记录下来,按照通信协议进行解析,综合分析解析得到的数据后对系统性能做出评价,或是利用故障参数数据对武器系统进行故障诊断,帮助测试人员快速定位故障位置,有利于武器系统的改进和维护。本文以数据的处理过程为思路,设计完成了数据记录、解析模块,对导弹故障诊断、预测进行仿真,并利用仿真结果完成故障诊断模块的设计与实现
光子计数成像广泛应用于天文成像,夜视成像,医学成像等重要领域。但是,由于硬件设备和成像环境的影响,成像设备采集到的光子数量严重不足,此时,服从Poisson分布的散粒噪声会严重降低成像质量,生成低质量的低光子Poisson图像。在低光子Poisson图像中,图像局部自相似性、图像局部几何的灰度一致性和连续性均受到严重破坏,导致在图像的局部几何结构检测和非局部图像块几何相似性度量中上均存在非常大的误
目前,神经网络和深度学习的理论与方法广泛应用于计算机视觉和目标检测的研究,其研究成果已广泛用于自动驾驶、航空出行、安防等领域。传统的目标检测方法依靠绘制在目标上的矩形,通过水平和垂直边界框来确定目标位置。航空图像中的物体方向随机,密集且周围复杂,因此对传统的物体检测模型构成了挑战。传统的矩形框会忽略物体的方向,从而导致物体定位减少,并且在目标密集情况下重叠的框会限制进一步的处理,例如目标的理解和检
随着仿真系统愈发复杂,以及用户对仿真应用的要求日益提高,仿真系统可信度评估正面临越来越多的挑战。可信度评估是指分析、计算和评价仿真系统可信度程度,并最终判断其是否可信的一系列复杂过程。如何正确地开展仿真可信度评估是当前研究的热点与难点,也是本文研究的重点。国外在可信度评估中引入可接受性标准(Acceptability Criteria,AC)的概念,通过从仿真需求或预期用途中归纳出合适的可接受性标