【摘 要】
:
塔里木油田储层具有高温高盐、非均质性强、含水率高和采出程度低的特点。现有调驱体系耐温耐盐性能不足、地层适应性差,难以满足深部调驱提高采收率的技术要求。针对这一难题,本文研究了以耐温耐盐冻胶分散体和高效表面活性剂构筑的非均相调驱体系,探究了非均相调驱体系与地层孔喉间匹配规律,揭示了非均相调驱体系的地层适应性机理,为塔里木油田进一步提高采收率提供技术支撑。通过室内瓶试法优选耐温耐盐强化HTQ本体冻胶体
论文部分内容阅读
塔里木油田储层具有高温高盐、非均质性强、含水率高和采出程度低的特点。现有调驱体系耐温耐盐性能不足、地层适应性差,难以满足深部调驱提高采收率的技术要求。针对这一难题,本文研究了以耐温耐盐冻胶分散体和高效表面活性剂构筑的非均相调驱体系,探究了非均相调驱体系与地层孔喉间匹配规律,揭示了非均相调驱体系的地层适应性机理,为塔里木油田进一步提高采收率提供技术支撑。通过室内瓶试法优选耐温耐盐强化HTQ本体冻胶体系,采用机械剪切法将本体冻胶制备为粒径可控的冻胶分散体颗粒。通过界面张力实验优选出的耐温耐盐高效表面活性剂体系与冻胶分散体组合优化,构筑兼具深度调剖和高效驱油作用的非均相调驱体系。通过岩心物理模拟实验,研究非均相调驱体系与地层的匹配规律、深部运移能力和宏观调驱效果;通过连续孔喉模型研究颗粒体系的微观匹配规律;通过在线核磁和非均质模型研究调驱过程中的油水分布特征和微观调驱效果。构筑的非均相调驱体系是由0.1-0.2 wt%耐温耐盐冻胶分散体、0.35-0.5 wt%BSSB和0.4-0.5 wt%APEC-9组成。体系显示出优秀的耐温耐盐能力,耐温可达120°C,耐盐20.93×10~4 mg/L,可以降低界面张力至10-1 m N/m数量级;可将油湿表面(原油接触角28.9°)转变为水湿(原油接触角131.6°);具有一定的乳化效果;剪切后黏度恢复率高达90%。引入地层匹配系数的概念,建立匹配规律数学模型,优选最佳匹配系数范围为0.20-0.30。在优选的匹配系数范围内,非均相调驱体系具有良好的注入性、深部运移及深部调控能力,同时体系中的表面活性剂显著提高了驱油效果,室内实验条件下综合采收率增值可达24.31%。通过宏观、微观地层适应性实验,阐明了非均相调驱体系通过动态深部运移和沿程微观调控实现均衡驱替,协同高效洗油,大幅度提高原油采收率的地层适应性机理。
其他文献
体积压裂过程中需要频繁的射孔完井作业,射孔弹巨大的爆炸冲击力会导致井筒完整性产生破坏,其中水泥环作为井筒中最薄弱的环节首当其冲,孔眼附近的水泥环容易产生初始损伤,主要包括,一是射孔孔眼附近的水泥环本体产生初始微裂缝;二是套管-水泥环界面与水泥环-地层界面在射孔冲击作用下发生震裂脱离,产生初始界面微裂缝。这些水泥环微裂缝会在压裂液的作用下发生进一步的扩展,这不仅可能会沟通相邻压裂段,导致压裂作业的失
我国页岩油气资源储量十分丰富,已成为勘探开发的热点领域。由于页岩储层低孔低渗的特征,必须使用压裂改造才能实现工业开采。为了提高开采效率,需要先对页岩储层特征进行细致的研究,寻找有利开发层段。目前我国对页岩储层评价的研究大多是借鉴北美页岩开发的经验,制定的标准定量描述不够精确,严重影响评价结果的可靠性。同时对页岩储层可压裂性缺乏统一的评价方法,严重制约了页岩油气的高效开发。因此有必要建立一套可靠的定
注气吞吐在稠油油藏衰竭采油后期有着广泛的应用,然而存在注入气快速产出、原油粘度重新上升等缺限。本文通过结合油溶性表面活性剂的起泡性和混合气体(产出气和丙烷)的降低原油粘度、引起原油体积膨胀等特点,研究人工泡沫油强化混合气体吞吐方法,试图解决传统注气吞吐的缺限。本文采用专门设计的长岩心实验装置,首先进行注入产出气体吞吐实验、注入混合气体吞吐实验和注入人工泡沫油强化混合气体吞吐实验,通过对比各种情况下
塔河油田缝洞型碳酸盐岩底水油藏主要以直井模式开发。目前油田底水上升情况严重,底水锥进对油、气藏开采不利。为保持油藏的有效开采,需进行底水治理。由于油藏温度高、地层水含盐量大、油层厚等原因,注水泥、注冻胶建隔板封堵底水都存在缺陷。针对这个问题,本文提出通过树脂颗粒热粘连和单体地下聚合两种方法构建化学隔板体系。论文初步筛选了满足塔河油田油藏条件下耐温耐盐的自粘连树脂颗粒,并围绕单体聚合时间调控、隔板原
稠油资源占全球剩余石油资源的70%以上,稠油生产通常采用注蒸汽的方式,蒸汽温度高达350℃,常规油井水泥环在高温下常发生抗压强度衰退的现象,所以开发出适用于稠油注蒸汽热采井强度要求的胶凝材料体系对稠油安全开采和提高稠油井生产寿命具有重要意义。在文献调研的基础上,实验研究了不同胶凝材料体系在不同温度下的抗压强度,优选出了具有抗高温(350-380℃)强度衰退的胶凝材料体系,并采用X射线衍射、扫描电子
南海深水油气钻井工程中,储层微粒运移、堵塞是造成疏松砂岩储层损害的重要原因之一。因此,迫切需要探索一种有效控制深水疏松砂岩储层微粒运移损害的新方法。本文结合纳米材料领域最新研究进展,设计实验评价纳米颗粒对储层微粒运移损害的控制效果,探讨储层微粒与吸附纳米颗粒的岩石孔壁之间的相互作用机制,揭示纳米颗粒控制储层微粒运移损害的作用机理。实验优选出适用于深水疏松砂岩储层微粒运移损害控制的纳米储层保护剂,优
纳米流体作为一种新型介质在自身性质等方面有着不可替代性。本项研究针对砂岩储层特征,研究了纳米流体润湿反转特性、纳米流体渗吸提高采收率机理等关键问题,为纳米流体开采砂岩油藏提供实验理论支持。本文借助接触角测量、毛管渗吸物理模型、纳米颗粒与油相微观相互作用力等实验方法确定合适纳米流体体系并开展纳米流体润湿反转特性及基于原子力显微镜(AFM)的相互作用力微观研究;通过核磁共振(NMR)分析方法、依据岩心
钻井过程中,大量废弃钻井液的处理逐渐成为制约钻井成本的重要因素。据统计,全国油气田每年产生的废弃钻井液多达9.8×10~5吨。废弃钻井液的主要成分是无机盐、重金属离子、油、岩屑以及具有不同程度毒性、难以自然降解的有机处理剂,常规处理方法如直接排放法、就地掩埋法、固化处理法及固液分离法等方法既无法实现废弃钻井液的循环利用,还会造成环境污染。因此,研究一种低成本、低污染、高循环利用度的废弃钻井液处理技
塔里木盆地中部北坡地区高温高压深层油气钻探工程中,面临高密度水基钻井液长期高温稳定性调控的世界性技术难题,严重制约了塔中北坡地区深层高温高压油气资源的勘探开发进程。因此,迫切需要开展高密度水基钻井液耐高温稳定性调控机理与新方法研究。基于高温高密度水基钻井液性能调控技术难点分析,本文首先重点实验探讨了高温对钻井液中的配浆土、主要处理剂和加重材料等主要组分作用的影响,明确了聚磺钻井液高温稳定性调控的难
深水油气管道中高压、低温的环境条件易导致水合物生成,然而水合物的生成、分解等动力学过程均可能发生颗粒间聚集、阻塞,危及油气生产及输运安全。本文基于微观力学机制及颗粒动力学理论,从实验及仿真研究等角度入手,较为系统地探索了水合物颗粒微观聚集机理。利用自行构建的水合物微观可视化装置和微观粘附力测试装置对水合物的生成和分解规律进行了研究,从微观角度探索了油水分散体系中水合物的生长和分解对分散相聚集的影响