论文部分内容阅读
当前已经商业化的锂电池负极材料,主流产品为人造石墨和改性天然石墨,还有少量产业化应用的钛酸锂,可以基本满足一般电子产品、储能电池的要求。但由于它们的理论容量均不高,不能满足对电池储能具有更高要求的电动汽车等领域的发展需求。因此需要开发更多的具有高容量的电极材料,来提升电池能量密度。本课题选取锗作为研究对象,它的理论储锂容量高达1600mAhg-1,远远高于石墨(372 mAhg-1),非常有潜力提高锂电池的性能。然而,锗负极材料在应用到锂电池中时,也面临着较大的问题与挑战,即在充放电过程中,随着Li+在电极材料中的嵌入与脱出,电极材料会发生不可逆的体积变化,并且膨胀率高达370%。这会直接引起材料的内部相互挤压,导致材料破碎并从集流体脱离下来,使锂电池的循环稳定性大幅度降低。本课题通过电沉积的方法,从离子液体中直接将锗离子还原,沉积到具有特殊结构的集流体上,得到Ge镀层/特殊结构集流体的复合电极。电化学测试表明,这种方法制备的负极可以较大程度地改善锗的电化学性能,主要工作包括:(1)以铜网集流体作为沉积基底,通过离子液体电沉积的方法,实现了在其表面上电沉积上一层致密的锗层。以此锗/铜网复合物直接作为锂电池的负极,研究材料结构对电池电化学性能的影响。经沉积的锗层由致密的纳米颗粒组成,且与铜网之间的结合比较牢固,不易脱离。研究表明,从第2次起到第55次循环,容量衰退减缓,比容量由原来的873 mAh g-1下降到了 672 mAh g-1,容量保持率为76.9%。(2)以碳布集流体作为沉积基底,同样以离子液体电沉积的方法,制备锗/碳布复合电极。扫描电镜表征发现,在碳布纤维表面沉积的锗层具有"内疏外密"的双层结构。这种双层结构的锗镀层材料,不仅具有较高的比容量,还有效地缓解了材料在充放电过程中的体积变化严重的问题,使得材料的结构稳定性得以完善。电化学测试表明,在循环100次以后,电池的容量仍然高达989 mAh g-1,具有较高的容量保持率。