论文部分内容阅读
杆状病毒是一类感染昆虫的双链大分子DNA病毒,通常产生出芽型病毒(budded virions,BV)和包涵型病毒(occlusion-derived virions,ODV)两类形态不同的病毒粒子。苜蓿丫纹夜蛾核多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)BV的主要囊膜蛋白GP64属于第三类病毒膜融合蛋白家族,该家族代表性成员还包括水泡性口炎病毒(vesicular stomatitis virus,VSV)G蛋白和单纯疱疹病毒(herpes simplex virus type 1,HSV-1)gB等。目前,已解析的AcMNPV GP64在低pH条件下的三级结构包含五个结构域(domain I-V,简称DI-DV),但其中性pH条件下的三级结构以及低pH诱导的构象变化分子机制尚不清楚。本文针对AcMNPV GP64的DI与DV之间可能的相互作用以及晶体结构仍未被完全解析的DIV开展了结构与功能关系研究,取得的主要结果如下:一、DI与DV的结构与功能关系结构分析表明,GP64 DV与DI中邻近融合环2(fusion loop 2)的两个区域存在多个可能的相互作用位点。氨基酸序列比对分析显示,这些相互作用位点及其邻近的氨基酸残基比较保守。采用丙氨酸替换的方法对DI和DV中保守性较高或参与相互作用的24个氨基酸进行单点或双点突变。结果分析发现,DI与DV中氨基酸之间形成的分子内相互作用不是GP64表达、多聚体形成、细胞膜定位及膜融合功能所必需,但是参与相互作用的单个氨基酸对GP64膜融合功能却具有重要意义,其中DV区域内的4个氨基酸残基(G438、W439、T452和T456)对膜融合的起始及后续融合孔的形成或扩大具有重要作用。进一步研究发现,G438与W439可能参与维持GP64融合前构象的形成或稳定。二、DIV的结构与功能关系结构分析表明,DIV由两个平行的loop(loop 1-2)组成,其中loop2内的第394~398位氨基酸残基在已有的三级结构中缺失。分子内位点相互作用分析显示,在DIV内可能存在12个氨基酸之间的相互作用,主要分布在三个区域:1)顶部区域的N384-Y388;2)中部区域,由7个氨基酸形成包含位于loop1内的N381-N385、N381-K389、N385-K389和位于loop2内的D398-S400、D398-Q401以及连接loop1与loop2的N381-Q401、N381-I403、N385-W393、K389-W393的9个相互作用;3)底部区域,包括连接loop1与loop2的T379-F405以及位于loop2内的D404-S406。氨基酸序列分析表明,这些相互作用位点及其邻近氨基酸在GP64蛋白家族中高度保守。采用丙氨酸替换对DIV中保守的氨基酸及其形成的相互作用进行突变,发现所有位点的突变不影响GP64的表达及三聚体形成,但突变效应主要表现为:1.在转染质粒表达突变体的条件下,D404A、N407A不影响GP64在细胞表面的定位,却显著抑制融合孔的扩大;而另外5个保守位点(Y388、E390、G391、R392、W393)的氨基酸突变显著降低了GP64在细胞膜的定位并完全抑制膜融合起始;在重组bacmid表达各个突变体的条件下,E390A与G391A诱导形成较小的细胞融合嵌合体并抑制病毒入侵但不抑制病毒出芽释放。2.在双点突变中,T379/F405A、N385/K389A、D398/S400A、D398/Q401A不影响GP64的功能,而N381/Q401A、N381/I403A、D404/S406A抑制融合孔的扩大,N381/N385A、N381/K389A、N384/Y388A、N385/W393A、K389/W393A则抑制膜融合起始。此外,在重组bacmid表达突变体条件下,N381/K389A抑制病毒入侵但不抑制病毒出芽释放。3.特性类似的氨基酸取代突变体(Y388F、Y388W、E390D、R392H、R392K、W393F、W393Y)中,只有Y388F、E390D、W393Y诱导细胞融合,而其余4个突变体在细胞表面的定位显著下降。结构分析显示,在上述突变中,Y388A或N384/Y388A突变消除了N384-Y388的相互作用;而W393控制DIV的构象,丙氨酸替换W393导致DIV构象显著变化,突出表现为loop1内的S386、I387与loop2内的N396邻近并形成相互作用促使loop2顶部区域向蛋白中心偏移大约2.5?;另外,N381/K389A消除了N381-K389、N385-K389、N381-Q401、N381-I403的相互作用,而N381/I403A则消除了N381-Q401、N381-I403的相互作用,揭示破坏loop1与loop2之间的互作影响GP64的转运及其膜融合功能。最后,N381-N385、N385-K389与上述相互作用之间在维持DIV构象中具有冗余功能,消除这些相互作用后,DIV构象由于局部氨基酸的邻近形成新的相互作用(如A381-V394、A389-R392)协助其余的相互作用仍维持稳定。总之,我们的研究结果表明,DV结构域内的G438与W439以及DIV结构域内的N381、Y388、E390、G391、R392、W393及其与邻近氨酸酸形成的分子内相互作用在维持GP64中性pH条件下的三级结构及诱导膜融合的起始和融合孔扩大过程中具有关键调控作用。根据已获得的部分第三类病毒膜融合蛋白的融合前及融合后结构,我们提出了GP64可能的构象变化机制。