论文部分内容阅读
多年生黑麦草(Lolium perenne)是一种品质优良的冷季型草坪草,被广泛应用于园林绿化、运动场地建植和生态治理中。多年生黑麦草对高温的耐受性差,在我国华中和华南地区夏季地上部分枯死,不能安全越夏,成为其推广应用的制约因素。热激转录因子(heat shock transcription factors,HSFs)在植物高温胁迫调控网络中起着重要作用。多年生黑麦草品种胁迫耐受性的自然变异和胁迫耐受机制一直是育种工作者的研究重点。本研究通过解析非生物胁迫下多年生黑麦草的生理和分子调控网络,聚焦HSFs在多年生黑麦草高温应答中的功能和调控机理,为培育抗高温的多年生黑麦草新种质提供理论基础和技术支持,以期部分解决多年生黑麦草的越夏问题。重要研究结果如下:(1)非生物胁迫下多年生黑麦草抗逆筛选和转录调控机制解析:鉴定了非生物胁迫下17个多年生黑麦草品种的抗性,并从生理生化和转录组水平解析多年生黑麦草在高温、干旱和低温胁迫下的调控机理。结果表明,17个多年生黑麦草品种在干旱、高温和低温胁迫下有着极为显著的差异。胁迫处理后,抗性品种的脯氨酸含量及抗氧化酶活性显著高于敏感品种。转录组学研究结果表明,三种胁迫共同诱导表达的基因主要涉及碳水化合物代谢、氧化戊糖磷酸酯、金属处理、激素代谢和脂质代谢途径。而干旱胁迫条件下,异源物降解、氮代谢、碳水化合物代谢和氧化戊糖磷酸酯等途径被显著性富集。高温条件下,四吡咯化合物合成、光合作用、多胺代谢、硫吸收和碳水化合物代谢等途径被显著性富集。而低温条件下,碳水化合物代谢、乙醛酸循环、异源物降解、多胺代谢和糖酵解等途径被显著性富集。基于多年生黑麦草的干旱、高温和低温胁迫后的转录组数据,构建多年生黑麦草非生物胁迫调控网络,并分析发现HSFs在非生物胁迫调控网络中起着重要作用。(2)LpHSFCs提高多年生黑麦草耐热性机制:从多年生黑麦草中克隆到受高温处理诱导表达的LpHSFC1b和LpHSFC2b,序列分析结果表明它们的氨基酸序列都具有DBD、OD和NLS结构域。亚细胞定位实验表明它们都定位在细胞核。在拟南芥中异源表达LpHSFC1b和LpHSFC2b可以显著性提高植物耐热性。高温胁迫下,LpHSFC1b和LpHSFC2b转基因拟南芥的电导率、丙二醛含量和叶片损伤指数显著低于野生型,而且热胁迫响应基因的表达量显著升高。(3)多年生黑麦草热激转录因子家族鉴定和表达分析:利用生物信息学手段从多年生黑麦草基因组和转录组数据中鉴定到17个LpHSFs,其中A、B、C亚家族分别有10、5、2个基因。通过与水稻同源基因氨基酸序列比对,构建系统进化树,对LpHSFs进行分类和命名。基因结构、蛋白保守结构域和启动子上顺式作用元件分析表明LpHSFs具有高度保守的结构域,尤其是在3个亚家族中,并且大多数LpHSFs含有多种激素和胁迫响应元件。互作网络分析表明,LpHSF基因主要与转录因子活性、DNA依赖性转录、信号传导、核苷酸结合、生物或非生物胁迫应答、RNA、植物激素代谢、信号和胁迫等有关。通过RNA-seq和q RT-PCR分析验证了LpHSFs的表达谱,表明LpHSFs可能对非生物胁迫至关重要,特别是热胁迫。这些结果表明LpHSFs基因对植物应对高温胁迫和生长发育至关重要。(4)LpHSFA3激活LpHSFA2增强多年生黑麦草耐热性机制:从多年生黑麦草叶片中克隆到受高温显著性诱导的LpHSFA3和LpHSFA2a。序列分析结果表明它们都具有HSF蛋白典型的保守结构域(DBD、OD、NLS、和AHA)。将LpHSFA3和LpHSFA2a分别转入拟南芥植株和多年生黑麦草的原生质体。高温胁迫下,LpHSFA3和LpHSFA2a转基因拟南芥植株的电导率显著低于对照,成活率显著高于对照,表明LpHSFA3和LpHSFA2a的异源表达可以显著性提高植物耐热性。在LpHSFA3和LpHSFA2a转基因拟南芥植物和多年生黑麦草原生质体中热激响应基因明显被激活。LpHSFA3和LpHSFA2a均定位于细胞核中,并起着转录因子的作用。LpHSFA3与LpHSFA2a启动子中的HSE区结合,并组成性激活LpHSFA2a的表达。这些结果表明,转录因子LpHSFA3通过LpHSFA2a正向调控植物耐热性,其为理解植物热胁迫反应的调控网络提供了新的证据。(5)多年生黑麦草的原生质体转化和遗传转化体系优化:以多年生黑麦草‘流星雨’品种的10-12 d幼苗叶片为材料,建立了一套高效的多年生黑麦草原生质体转化体系,并基于此体系建立了一套可以快速筛选确认高温胁迫候选基因的实验方案。此外,以5个多年生黑麦草品种的种子为材料,进行愈伤诱导率、增殖率、再生率和转化率筛选试验,初步建立了以多年生黑麦草‘流星雨’品种为材料的愈伤组织再生和遗传转化方案。上述结果表明,多年生黑麦草不同品种对非生物胁迫具有不同的耐受性。LpHSFs在非生物胁迫调控网络中起着重要调控作用。LpHSFA3可通过与LpHSFA2a启动子的结合,激活LpHSFA2a和下游热激相关基因的表达从而增强多年生黑麦草的抗热性。LpHSFC1b和LpHSFC2b也作为正调控因子,提高多年生黑麦草对高温的耐受性。相关研究阐述了多年生黑麦草应答高温胁迫的机制,同时对多年生黑麦草转化体系的优化,为通过生物技术培育多年生黑麦草新种质提供了技术支撑。