低维量子多体系统的特性及其量子相变的理论研究

来源 :浙江大学理学院 浙江大学 | 被引量 : 0次 | 上传用户:t381598972
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要讨论了低维量子体系中的相变和临界现象。这些体系包括一维两分量玻色子体系、一维海森堡链、一维玻色费米混合体系和二维电子气。在低维量子系统中,由量子涨落控制的量子相交是值得研究的问题。论文中应用了解析严格求解和数值对角化等方法对相关问题进行了研究和讨论。   论文首先对凝聚态物理中低维量子体系的背景、研究意义和部分研究成果进行了介绍,然后阐述了低维物理学在凝聚态物理研究中的重要性。   论文的第二章主要采用Bethe ansatz方法讨论了具有吸引相互作用的一维两分量玻色子体系。利用数值和解析的方法,我们对此体系的基态和低激发态做了详细的分析,并发现其基态是束缚态,粒子之间的结合以两两配对的形式出现,任意打破一对配对,就会导致激发,激发态和其对应的单根有关。对两粒子情况,我们做了特别的研究,得到了其基态是铁磁态且基态与耦合常数无关的结果。   第三章,在扭曲边界的一维海森堡链里,利用先前已有的Bethe ansatz根,我们分别用解析和数值的方法对低激发态的持续流谱做了讨论。尽管自旋单态激发和自旋三态激发简并,但是它们的持续流谱已经被明确地证实是完全不同的。非零的自旋流成了有限温度自旋硬度的主要贡献,这些结论给研究一些可积模型中的自旋输运问题提供了参考。   目前,有关玻色费米混合体系性质的理论还不完善,仍有很多问题等待探讨和解决。我们在第四章里用Bethe ansatz方法对一维玻色费米混合问题做了详细的讨论,首先选择三种不同的参考态,然后利用量子反散射方法得到三组相应的Bethe ansatz方程。通过对这三组方程的分析,我们给出体系的基态和低激发态的一致结果,并在数值上验证了该结论:体系的基态为全是玻色子的状态,低激发态为玻色子和费米子共存的状态。   由于玻色-爱因斯坦凝聚实验(BEC)的实现,光学格点中冷原子问题成了目前凝聚态物理的主要研究方向之一。理论上,冷原子在适当条件下就会经历一个由超流到绝缘的相变。基于此,第五章主要研究了两光学格点中的二玻色子体系,我们用Negativity分析了这个模型的纠缠问题,发现即使在极低温的情况下,纠缠仍可以通过外场来调控。论文对平行场和反平行场的情况做了具体的讨论,当温度升高时,纠缠会增强,反平行磁场下的纠缠比平行磁场下的纠缠大。在一定温度下,我们还观察到化学势对纠缠的影响。   在第六章中,论文讨论了有合金杂质的二维电子气系统AlxGa1-x As/AlyGa1-yAs。这个工作的目标是试图解释普林斯顿小组近年来在该材料的整数量子霍尔效应中观测到的反常标度行为。这个工作仍在研究中,论文报告了一些初步的计算结果。特别地,合金杂质势的引入为整数量子霍尔效应的格点模型打开了一个新的自由度。
其他文献
在高密或高温条件下,强子物质会退禁闭为夸克-胶子等离子体,即发生强子-夸克相变。这样的相变在重离子碰撞以及中子星等相关问题的研究中一直受到关注。本文中,我们采用相对
CaMnO3基氧化物是一种潜在的高温n型热电材料,本征材料具有高的Seebeck系数和低的电导率,因此提高材料的电导率是实验上提升材料的热电优值有效方法。实验上Ca位掺杂、Mn位掺
偶极流体体系在发生相变时,会释放或吸收大量热量,这一特征可被用于储存能量或控制环境温度,具有极大的实际应用价值。 近年来,随着偶极流体理论的发展,人们对该体系做了大量的
本文主要研究了复杂网络中的非线性动力学行为,特别是复杂网络的两个重要特性:网络演化中的优先连接机制和网络的分层结构,探讨具有这样特性的网络所能体现的自组织临界行为。本
学位
强子的内部结构及相关问题一直是粒子物理理论和实验研究的热点领域,需要深入探索。近年来实验上发现了许多新的奇特强子态,例如,XYZ粒子。这些新强子态的结构与其产生机制密切
学位