【摘 要】
:
人工智能、大数据等技术的发展对计算性能的要求逐步提高,然而,晶体管和存储单元的开发已经达到了微型化的上限。解决方式之一是利用能够在极化和磁化两种状态下进行信息存储的多铁材料,通过每一变量的正负调控以实现四种存储状态。但多铁材料数量少、磁电有序发生温度低等一系列问题阻碍了其在内存设备中的实际应用。近期,六甲基苯中CH3+和卤化铵(NH4X,X=Cl,Br,I)中NH4+周期性运动导致的磁有序被报道,
论文部分内容阅读
人工智能、大数据等技术的发展对计算性能的要求逐步提高,然而,晶体管和存储单元的开发已经达到了微型化的上限。解决方式之一是利用能够在极化和磁化两种状态下进行信息存储的多铁材料,通过每一变量的正负调控以实现四种存储状态。但多铁材料数量少、磁电有序发生温度低等一系列问题阻碍了其在内存设备中的实际应用。近期,六甲基苯中CH3+和卤化铵(NH4X,X=Cl,Br,I)中NH4+周期性运动导致的磁有序被报道,其磁性来源是质子的轨道运动。这一发现可以根本性地避开铁电与铁磁性质由于电子构型的互斥而无法共存的阻碍,拓宽磁电耦合效应的可能性及多铁材料的体系数量。基于此,本论文对NH4+铁电体材料的磁电耦合性质进行以下研究:通过测量(NH4)2SO4的磁化率和介电常数,对基于质子轨道运动磁性的新型磁电耦合机制进行分析。在TC处,观察到慢速变温的介电常数曲线中出现两个相变峰,磁化率曲线也同步表现出明显的台阶状突变。且沿不同轴向的外加磁场下,磁化率曲线的突变情况与结构中铵根的取向变化相对应。通过对H原子的运动情况的分析及铵根的结构特性,对质子轨道运动产生的磁性进行分析:随着温度的降低,NH4+的周期性旋转运动方式受到限制,晶格需要变形以消除简并度。(NH4)2SO4含有两种类型的氢键运动,产生的畸变无法相互抵消。相变后变为非中心对称结构,表现出铁电性质。结合NH4+的圆周轨道运动与H2PO4-中H原子的一维振子运动对结构的影响,对比NH4H2PO4和KH2PO4磁化率随温度的变化情况。在NH4H2PO4及其部分氘化晶体中,沿不同轴向的磁化率曲线在相变温度TN处均有不连续的突变出现。而KH2PO4中仅存在酸根氢原子的作用,其铁电相变温度处的磁性突变仅出现在a、b轴向且不连续性较弱。通过同位素效应对铁电相变与磁性相变温度的影响,对相变过程中H原子的作用进行分析。对NH4Al(SO4)2·12H2O(AASD)的复杂结构中NH4+的运动对磁化率,介电常数,比热等性质产生的影响进行了测试。当样品从顺电相以1 K/min的速率进行较为快速的降温时,这一过程不利于结构平衡状态的实现,系统维持抗磁性;以0.1 K/min的速率缓慢降温,则质子轨道会变得更加有序,在温度低于相变温度TC=58 K后呈顺磁性。通过AASD作为铁电体材料本身具有的铁电极性和在相变温度附近能够通过变温速率控制的两种磁性,可以实现新一代非易失性存储设备的开发构型,成为维持摩尔定律发展趋势的一个新方向。
其他文献
噬菌体是细菌宿主基因组中的一种胞内形式,它在细菌DNA中呈现出的高特异性能够帮助水平基因转移(HGT)。随着在基因组学或宏基因组学研究中发现的微生物序列呈指数增长,对能够快速,准确识别噬菌体的工具提出了巨大的需求。在这里,我们介绍DBSCAN-SWA,这是一种命令行软件工具,其主要功能是细菌基因组中原噬菌体区域的识别与注释。方法:首先,搭建、开发关于预测并注释原噬菌体区域的服务器环境、工具与算法。
多金属氧酸盐(Polyoxometalates,缩写为POMs,简称多酸)是一种多核金属氧簇,具有多样的组成与结构,在催化、医学、磁性和材料科学等领域有着广泛应用。其中,钴取代型多钨酸盐具有优异的光催化和磁学性质,但是目前合成的该类型的化合物较少,而且局限于合成单一配体桥连的钴取代型多钨酸盐。本研究在分子设计合成思想指导下,使用缺位型多钨酸盐为基本构筑单元,加入过渡金属钴形成[Co4O3(A‐α‐
水作为反应溶剂相比于传统有机溶剂具有安全、廉价、无毒、无污染等特点。水相有机反应通过以水作为反应介质,可以避免有机溶剂的使用,从而解决有机溶剂带来的毒性、易燃易爆性以及对环境的危害问题,是绿色化学的重要研究方向。喹唑啉酮类化合物是一种在天然产物、合成药物和生物成像等领域有着重要的应用的有机中间体。由于喹唑啉酮类化合物的重要价值,其合成研究一直受到重视,但传统的合成方法不仅需要苛刻的反应条件,或者使
苦咸水淡化已经成为解决目前国内外淡水资源短缺以及提供清洁安全的生活、生产用水的有效途径之一。纳滤膜以其低运行成本和优越的截留性能,确立了它在苦咸水淡化领域中的重要地位。但是传统的薄膜复合(TFC)纳滤膜在渗透性和选择性之间存在的“权衡”效应,“权衡”效应的存在限制了纳滤膜的进一步发展。此外,纳滤膜还面临浓差极化和膜污染等问题,膜污染会引起渗透通量的衰减,缩短膜的使用寿命。因此,在不牺牲选择性的前提
半导体光催化技术,是一种以半导体材料为催化剂,利用太阳光能催化降解有机污染物、光解水制备H2和催化还原CO2制备CH4等清洁能源的新兴技术,在治理环境污染和解决能源短缺这两大问题上具有非常广阔的发展前景,受到人们的广泛关注。半导体光催化材料的性能高低,受材料的光吸收能力、光生载流子分离效率、传递效率、光生载流子氧化还原能力等多种因素影响。根据文献报道,掺杂过渡金属离子引入缺陷、构建Z型异质结是提升
碳化硼(B4C)具有密度低、熔点高、超高硬度、热电性能优异以及良好的中子吸收能力等特点,被广泛应用于核工业、磨料、军工、电子和工程结构件等领域。然而,碳化硼强共价键结合的特点,使B4C陶瓷具有难烧结、难致密和断裂韧性低等缺点,严重限制了B4C陶瓷在工程领域和军工领域的应用。为了解决上述问题,本文通过引入第二相的方法改善B4C的烧结性能,向B4C基体中引入铝(Al)或碳纳米管(CNTs)来制备碳化硼
金属有机骨架(MOFs)由于其具有孔道结构可调节、组装方式多样性、网络结构丰富、结构稳定等特性,而受到广泛关注。MOFs在气相催化、气体存储与分离、质子传导、生物成像、小分子传感等领域具有广泛的应用前景。近年来,以功能特性为导向,许多具有新颖结构的MOFs不断被获得,例如以荧光检测为导向,许多具有优异发光性能的MOFs已经被开发出来,并用来检测各种对环境和人体有害的小分子化合物、硝基爆炸物、阴阳离
SiC陶瓷材料具有密度低、强度高、硬度大、耐高温、导热快等诸多优点,在航空航天等领域中具有十分广阔的应用前景。但是SiC陶瓷材料断裂韧性较低以及常压烧结难致密等缺点极大的限制其在实际中的大规模化生产应用。而相比于其他增韧方式,颗粒增韧制备工艺简单,生产成本较低,更适用于大规模工业化生产。本文通过SiC陶瓷基体中引入SiC纳米颗粒来提高常压烧结SiC陶瓷的致密性和断裂韧性,并对SiC纳米颗粒的作用机
海洋蕴藏着丰富的能源,开发海洋资源是解决人口增长和资源枯竭的必由之路。随着海洋强国战略的提出,我国开发海洋的速度不断加快。水下无人有缆机器人(Remotely Operated Vehicle,ROV)凭借其良好的机动性和深水作业能力,日渐成为海洋结构物检测维修和水下救援中的重要工具。它可以代替潜水员执行水下复杂环境的探测和维修作业,同时可以深入海洋深处进行资源观测和勘探。水下钻孔作业是海洋结构物
工业化进程的加快造成了严峻的能源和环境问题,对人类健康产生严重的威胁。太阳光取之不尽用之不竭,具有环保、可持续等优点,得到了广泛的关注。而基于太阳光的光催化技术能够有效解决资源和能源问题。二氧化钛(TiO2)作为最早被发现的光催化材料,具有高储量、低毒性、高催化活性等优势,促进了光催化领域的发展。常见的TiO2以纳米颗粒的形式被利用,但要实现催化剂的循环利用,就要对催化剂进行固液分离。不但增加处理