论文部分内容阅读
固体氧化物燃料电池(SOFC)是一种直接将燃料的化学能转换为电能的发电装置,目前使用的SOFC依然以H2作为主要的燃料,而SOFC相对于其它种类的燃料电池是“吃粗粮”的燃料电池,其燃料不仅可以使用氢气,还可以使用碳氢类燃料。但是,经典的Ni基阳极由于其存在积碳、镍粒粗化、硫中毒等现象,从而降低SOFC的功率性能和操作寿命,因此并不适合直接使用碳氢类作为燃料。因此,开发与碳氢类燃料相适应的新型陶瓷阳极是当前研究热点课题。目前研究表明,混合电子-离子导体(MIEC)氧化物陶瓷阳极表现出良好的抗硫抗积碳能力。本论文具体内容如下:论文第一章简单综述了SOFC的工作原理,主要构型及关键材料;重点概述了阳极的主要材料类型、阳极性能的优化方法,并介绍了电化学阻抗谱的时间弛豫分布(EIS-DRT)分析方法;针对SOFC阳极材料存在的问题提出了本论文的研究内容和研究目标。第二章对本论文中涉及粉体的制备方法、单电池的制备过程、相关测试样品的制备方法进行简单介绍,并对本论文实验涉及的表征和测试进行了简述。第三章中通过改进的柠檬酸盐-EDTA-硝酸盐燃烧法制备了SrFe0.8W0.2O3-δ(SFW)钙钛矿氧化物作为对称固体氧化物燃料电池(SSOFC)的电极材料。发现钨掺杂剂可以稳定SrFe O3的立方钙钛矿结构并增加对还原性气氛的抵抗力。同时,深入研究了SFW作为SSOFC电极的电催化活性。在800 ℃时,SFW|La0.8Sr0.2Ga0.8Mg0.2O3-δ(LSGM)|SFW SSOFC在氢气和空气气氛中的面积比极化电阻(ASR)分别低至0.20Ωcm2和0.084Ωcm2。SFW电极过程的EIS-DRT分析结果表明,阳极工作条件下的电极过程的主要速率控制步骤是SFW表面的氢吸附/解离过程,而在阴极条件下电极过程的主要速率控制步骤则归因于吸附氧的解离和电荷转移过程。当使用氢气作为阳极燃料气体,空气作为阴极氧化气体时,SFW|LSGM(300μm)|SFW SSOFC在850 ℃时表现出930 m W cm-2的高功率密度和0.075Ωcm2的低极化电阻,这表明SFW是有前途的SSOFC电极材料。第四章为了优化SrFe0.8W0.2O3-δ(SFW)的性能,制备了N i掺杂的SrFe0.75W0.2Ni0.05O3-δ(SFWN)钙钛矿氧化物,并作为固体氧化物燃料电池的新型陶瓷阳极材料进行了评估。在800 ℃的湿润氢气条件下,SFWN可以部分被还原,在SFWN母体表面原位脱溶出Ni Fe合金纳米粒子。合金纳米粒子的表面修饰改善了阳极的氢氧化反应(HOR)动力学,800 ℃时面积比极化电阻(ASR)从SFW的0.200Ωcm2降低到SFWN的0.125Ωcm2。EIS-DRT分析表明,SFWN阳极的速率控制步骤仍为电极表面的氢吸附和解离过程,但与SFW阳极相比,表面脱溶修饰加快了氢的吸附和解离过程。在潮湿H2/空气条件下,电解质支撑的SFMN|LSGM|La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)单电池峰值功率密度在700、750和800℃分别达到330、483和769 m Wcm-2。100小时的长期测试表明:前40小时电池功率不断升高,预示电极脱溶过程不断进行;后60小时电池性能基本保持稳定。以上结果表明,SFWN材料是SOFC高性能陶瓷阳极的潜在候选。第五章制备了钨离子掺杂稳定的钴酸锶材料并研究了其作为SOFC阴极材料的性能。对于钴酸锶材料而言,钨离子的固溶度不高,当钨掺杂量达到0.1时就出现了Sr3Co2WO9杂相。钨掺杂的钴酸锶材料电导率在200-800℃呈现半导体传导特性,其值随温度升高而升高。Sr Co0.95W0.05O3-δ(SCW0.05)在空气中的电导率高达70 Scm-1,但由于杂相出现使得Sr Co0.9W0.1O3-δ和Sr Co0.85W0.15O3-δ的电导率急剧降低。SCW0.05|Sm0.2Ce0.8O2-δ(SDC)|SCW0.05对称电池表现出低的极化电阻,700 ℃空气气氛中ASR值为0.13Ωcm2。阳极支撑的SCW0.05|SDC|Ni-SDC单电池在700、650、600、550 ℃的峰值功率密度分别为773.8、597.9、428.9、281.4 m W cm-2。