论文部分内容阅读
波导作为信号传播的通道和器件的连接装置,是集成光学的基本组成单元,也是全光通信的基础,以其独特的性能、高集成化和规模生产的低成本,在各种光器件的制造中起着重要的作用。研究人员一直在探索有效的方法来制备具有优良性能的光波导。离子注入作为一种重要的材料改性方法,因其具有可控性好、对材料的选择性较少和注入温度可调等优点,已经发展成为制备光波导的重要手段。在离子注入过程中,注入离子通过与材料的相互作用传递自己的能量,造成核能量损失和电子能量损失。该能量损失将导致衬底材料的结构发生畸变,引起注入区材料的折射率发生改变,在离子注入末端形成折射率降低的光学位垒,或者注入诱导产生折射率增强势阱。通过光学位垒和增强势阱对光传输进行限制,形成波导结构。因此,可以通过控制注入离子的种类、能量和剂量等条件及后期的退火处理等手段来制备出具有应用价值的光波导。离子注入技术按照注入离子的原子质量大致分为轻离子注入和重离子注入两种方式。其中,轻离子注入的离子包括质子和氦离子;而重离子则主要有C2+、O3+和Si2+等原子质量较大的离子。一般来说,轻离子注入对材料的扰动较小,但是其注入剂量较大,成本较高。重离子注入的剂量则相对较低,对于某些特定的材料,形成有效波导结构所需的离子剂量仅为1013ions/cm2量级。条形光波导是波导耦合器、波导调制器、波导开关以及波导激光器等无源和有源器件的基础。探讨离子注入条形波导的制备不但是光波导应用研究的基础,还可以拓展核技术在光电子领域中的应用。本论文主要研究离子注入方法在掺镱硅酸盐玻璃(Yb3+-doped silicateglasses)、铒镱共掺硅酸盐玻璃(Er3+/Yb3+co-doped silicate glasses)、掺镱磷酸盐玻璃(Yb3+-doped phosphate glasses)和掺钕磷酸盐玻璃(Nd3+-doped phosphateglasses)等光学玻璃表面形成光波导。利用棱镜耦合法测量了所制备光波导的暗模特性;使用端面耦合法测试了光波导的近场光强分布和光波导的传输损耗;通过反射计算方法(reflectivity calculation method, RCM)和强度计算法(Intensitycalculation method, ICM)拟合了平面光波导的折射率分布,并对折射率的改变机理进行了研究;对比了部分样品在注入前后的透过光谱和微荧光光谱,探讨了离子注入波导制备方法对基质材料的光学性质造成的影响;在掺镱硅酸盐玻璃上利用离子注入方法结合光刻技术形成了条形光波导。主要研究工作如下:掺镱硅酸盐玻璃有较宽的吸收光谱(8501100nm)和荧光光谱(9001200nm),可作为飞秒超短脉冲激光和可调谐激光的工作物质;其储能效率高,荧光寿命长,在半导体列阵泵浦的高功率激光装置中具有巨大的应用潜力。另外,与掺镱的磷酸盐和硼酸盐玻璃相比,掺镱硅酸盐玻璃也有其突出的特点,例如物理化学性质稳定,能与石英光纤有效的耦合等。(1)本论文利用能量是(470.0+500.0)keV、剂量为(1.0+2.0)×1016ions/cm2的H+离子注入掺镱硅酸盐玻璃形成了折射率增加型的平面光波导。在射程的末端,用“离子交换”原理结合损伤机制探讨了折射率光学位垒的形成原因,并指出适当地调控氢离子的剂量能够优化增益介质光波导的激光性能。(2)利用能量(450.0+500.0+550.0)keV、剂量(2.0+2.0+2.0)×1016ions/cm2的He+离子注入掺镱硅酸盐玻璃制备出了平面光波导。结合离子注入的压紧效应和辐照产生非桥氧键的机制,探讨了波导区折射率增加的原因。(3)利用低剂量碳离子注入掺镱硅酸盐玻璃形成了折射率增加型的单模平面光波导。通过Model2010棱镜耦合仪测量了波导的暗模特性,采用端面耦合的方法测量了平面光波导的近场光强分布和传输损耗,并结合ICM方法重构了波导区域的折射率分布。结果表明制备的掺镱硅酸盐玻璃光波导在实际应用方面具有潜在的价值(。4)利用6.0MeV的O3+离子,剂量6.0×1014ions/cm2注入掺镱硅酸盐玻璃形成了平面光波导。利用棱镜耦合法和端面耦合法分别对比了退火前后波导的暗模特性和近场光强分布。通过SRIM’2006(Stopping andRange of Ions in Matter)程序模拟了6.0MeV的O3+离子注入到掺镱硅酸盐玻璃的注入过程,并根据RCM重构了波导的折射率分布。结果表明退火处理在没有明显改变波导折射率分布的前提下,有效地降低了波导的损耗,增强了波导对光的传输能力。Er3+离子的发射波长在1.55μm左右,为人眼安全波长,对应于光纤和大气通信的低损耗、低色散窗口。因此,掺Er3+玻璃在近红外放大器和激光器中具有广阔的应用前景。与其它玻璃体系相比,硅酸盐玻璃虽然具有较高的声子能量,但易于制备,且有良好的物理化学性能、热稳定性和机械性能,因而极大地引起了科技工作者的兴趣。本论文利用能量6.0MeV、剂量6.0×1014ions/cm2的O3+和C3+离子分别对铒镱共掺硅酸盐玻璃进行了注入,形成了“增强势阱+光学位垒”型折射率分布的平面波导结构。通过棱镜耦合法和端面耦合法测试了波导的导模特性和传输特性。采用Back-Reflection法测得波导的损耗均在1.0dB/cm左右,具有潜在的应用价值。共焦微荧光测试结果说明离子注入波导制备方法几乎没有对Er3+离子的荧光性质造成影响。实验结果为在铒镱共掺硅酸盐玻璃上利用离子注入方法制备EDWA(Er-doped WaveguideAmplifier)提供了实验基础。掺镱磷酸盐玻璃易于制备,有良好的光学性质,较大的发射截面和高的量子效率,被视为发展高效、高功率激光器的一个主要途径。本论文利用能量为(450.0+500.0+550.0)keV,剂量为(2.0+2.0+2.0)×1016ions/cm2的He+离子注入掺镱磷酸盐玻璃形成了平面光波导,并对注入后的样品进行了一系列的退火处理(260oC410oC)。通过棱镜耦合法得到了导波模式的有效折射率随退火条件的变化特性。采用端面耦合法测量了波导经过一定的退火处理后的近场光强分布和波导的传输损耗。还利用能量为(5.0+6.0)MeV,剂量为(4.0+8.0)×1014ions/cm2的O3+离子注入掺镱磷酸盐玻璃制备出了位垒型的平面光波导。对比了该平面光波导经过退火处理(350oC,60min)前后的暗模特性、近场光强分布、折射率分布和传输损耗等波导特性,实验结果表明离子注入后的退火处理可以在一定程度上增强光波导的传输特性。这为掺镱磷酸盐玻璃的光波导应用研究提供了实验基础。掺钕磷酸盐激光玻璃在高功率激光系统中是一种非常优异的材料。其具有储能高,受激发射截面大和荧光寿命长等特点,也容易制备成大尺寸且光学均匀性好的玻璃。因此,掺钕磷酸盐激光玻璃被广泛地使用,如美国的国家点火装置(NIF)和中国的神光装置等。本论文采用能量为(450.0+500.0+550.0)keV、剂量为(2.0+2.0+2.0)×1016ions/cm2的He+离子以及能量为6.0MeV、剂量为6.0×1014ions/cm2的C3+和O3+离子分别注入掺钕磷酸盐玻璃均形成了位垒型的平面光波导。利用棱镜耦合法和端面耦合法测量了波导的导模特性和传输特性。通过背反射法测得所形成的平面光波导的传输损耗均在1.0dB/cm左右,具有潜在的应用价值。使用共聚焦显微镜对波导的荧光性质进行研究,发现玻璃材料的荧光性质,在波导中被比较好地保留了下来。该实验在掺钕磷酸盐玻璃上产生波导激光和波导放大器等方面具有指导意义。结合光刻掩膜工艺,利用多能量(450.0+500.0+550.0)keV、多剂量(2.0+2.0+2.0)×1016ions/cm2的He+离子注入掺镱硅酸盐玻璃得到了周期为50.0μm,宽度为7.0μm的条形波导。利用扫描电子显微镜观察了条形波导端面的微观形貌,通过端面耦合系统测量了导模的近场光强分布,使用Fabry-Perot法测量了波导的损耗。该实验为离子注入光波导的实用化提供了重要的实验基础。