【摘 要】
:
卷积神经网络(Convolutional Neural Network,CNN)由于具有表征学习的特点,被广泛应用于各个领域。近年来,随着卷积神经网络数量与规模的不断增加,基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的卷积神经网络加速器快速设计方法已成为重要的研究方向。但是现有的设计主要针对吞吐率进行优化,整体延时通常较长,不能很好地满足实时应用的需
论文部分内容阅读
卷积神经网络(Convolutional Neural Network,CNN)由于具有表征学习的特点,被广泛应用于各个领域。近年来,随着卷积神经网络数量与规模的不断增加,基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的卷积神经网络加速器快速设计方法已成为重要的研究方向。但是现有的设计主要针对吞吐率进行优化,整体延时通常较长,不能很好地满足实时应用的需求。针对该问题,本文提出了一种基于细粒度流水线架构的卷积神经网络加速器快速设计方法。整个设计方法分为前端设计与后端设计两部分,前端设计主要通过模型解析与模型优化对原始网络进行面向硬件实现的预处理,后端设计主要通过设计空间探索为预先设计的硬件模板进行参数选择,组成完整的硬件代码并部署到FPGA上。为了对整体延时进行优化,本文首先利用参数量化和层融合来降低计算与存储开销;再针对细粒度流水线架构的特点,提出了一种基于列的卷积计算优化方案,并对卷积层计算模板与片上缓存模板进行了设计;最后提出了一种基于Roofline模型的设计空间探索方法,通过对每级流水线的硬件资源进行合理分配,得到整体延时最短的设计点。本文提出的设计空间探索方法在Alex Net、VGG-16、Cifar10-fcn以及YOLOv2-tiny上进行了验证,并针对YOLOv2-tiny进行了硬件实现,在200MHz的时钟频率下可以达到的吞吐率为464.5GOPs,能效比为45.3GOPs/W,整体延时为27.78ms。与同类型设计相比,本设计的整体延时明显降低,吞吐率与能效比得到提高。
其他文献
无线传感网络至今已应用于很多领域,其安全性也越来越重要,保证网络数据安全传输、网络中设备安全可靠一直是一个研究热点。然而受网络传感节点能量、计算和存储资源限制,给传统的密钥管理及身份认证技术带来了巨大的挑战。论文在雾计算标准框架的基础上,设计了基于对称多项式的密钥管理和身份认证方案,充分利用网络中节点的计算和存储能力,在占用较少节点资源的同时,有效地保证了传感网络的安全。论文主要工作及取得成果如下
对卷积神经网络容错性的研究,是为了构建新型的更高可靠网络模型。真正的容错性,是指在系统架构层发生异常时,神经网络仍然能保持正常应用功能的能力。在航天领域,空间辐射环境引发的软错误,会给系统的稳定运行和卷积神经网络应用带来隐患。因此,基于软错误的卷积神经网络容错性研究尤为重要。本文将围绕这方面的内容,设计适用于视觉卷积神经网络容错性研究的软错误激发系统。利用系统级仿真平台,本文对系统架构层的关键硬件
航空大数据是现代航空工业领域的重要研究课题之一,基于机载传感器的大数据获取让统计分析、支持向量机和人工神经网络等多种数据挖掘和分析技术得以应用,为大飞机异常检测、状态分析等工作提供更多技术手段。大飞机试飞时间序列数据由加装在飞机各部件上的传感器采集得到,具有维度高、样本数量多、部分数据变化快、以及样本分布随飞行状态变化等特点。包含飞机在各种飞行状态下的信息,具备研究价值。传统的移动平均和自回归等预
近年来深度学习和以预训练模型为代表的迁移学习被广泛应用于自然语言处理。将通用语料预训练模型迁移到特定情感分析任务有基于微调的迁移和基于特征的迁移两种方法。以BERT为代表的基于微调的方法,针对目标任务对整个预训练模型进行微调。以ELMo为代表的基于特征的方法,将计算代价高昂的预训练模型与下游模型的训练分离,首先从预训练模型中提取上下文词向量,再用目标任务重新训练下游模型,这样减少了训练所需的计算资
近年来,过渡金属硫族化合物(TMDs)由于其特殊的电学、光学、力学、磁学和化学特性,加速了包括气体传感器在内各领域的研究与发展。在TMDs中,硒化钼(MoSe2)是一种新兴的半导体材料,在储能、场效应晶体管和润滑剂等方面研究已较为成熟,但在气体传感器特别是室温气体传感领域的应用还比较少。同时,室温气体传感器如何克服响应值低、恢复慢和选择性差等问题仍是具有挑战性的研究课题。本论文为了改善室温气体传感
地铁是现代城市出行的首选交通工具。为了最小化对地表城市景观的影响,大部分地铁线路位于地下隧道内。由于地下水的存在,墙面渗漏是地下隧道的常见病害。目前对隧道内渗漏点的检测仍然依靠线路维护人员步行巡道,该方法需要较高的时间成本与人力成本。由于城市地铁的运营十分饱和,地铁的日常维护任务繁重,迫切需要一种识别渗漏点的自动化方法,提高维护工作的效率。目标检测是计算机视觉领域的重要分支。传统的目标检测任务需要
随着物联网(Internet of Things,Io T)设备的普及,基于无线信号的精确定位技术近年得到了飞速的发展并在工业界催生了大量的智能应用。其中重要的应用有传送带上的产品排序和货架上的物体定位及盘点,这些应用都需要对目标物体进行精确的定位。作为物联网重要的支撑技术之一,无线射频识别(Radio Frequency Identification,RFID)技术已被广泛应用于智能工厂或仓库的
近些年来,计算机技术的发展与互联网的普及极大便利了各种生产生活活动,但是安全意识的缺失也为恶意代码的出现提供了必要条件。恶意代码检测成为了安全领域的热点问题,但是恶意代码使用的各种对抗技术也让检测与分析十分困难。在传统的针对加壳恶意样本的处理流程中,会先对加壳的种类与算法进行识别,再使用对应的脱壳算法处理,得到原始代码,再进行分析处理,这一过程中存在很多技术难点,耗时也较长。本文希望针对加壳样本的
应变传感器作为传感器领域重要的组成部分,在实际生活如城防建设,器械生产监测以及基础设施的预防和检查方面都有重要应用。同时随着柔性电子学相关领域的发展,应变传感器在人机交互、医疗健康、人体运动检测等领域有更加广阔的应用。目前市面上存在各种类型的传感器如电阻与电容型传感器,但是由于电源与连接线的限制,应变测量的场景受到诸多约束。同时应变测量的非一致性和高造价也极大地限制了它们的发展。声表面波应变传感器
三轴磁通门传感器具有精度高、稳定性好、可矢量测量等优点,在空间探测、姿态控制、地质勘探以及地磁检测中具有重要应用。现代微型卫星、无人机、车辆导航等新兴领域对三轴磁通门传感器提出了微型化、集成化、成本低的新要求。现有研究显示,通过MEMS工艺制备高精度的二维平面螺线管平行式磁通门传感器的技术手段已经非常成熟。但是,常规MEMS技术的限制使得很难使用同一技术路线实现Z分量器件的同步集成制造,因此三维磁