论文部分内容阅读
生物质致密成型技术可以将生物质挤压成颗粒状、块状和立方状,可以显著提高其体积密度,进而降低储存、运输和处理成本,致密成型后的生物质产品形状大小均一,可以适用于标准的处理和储存设备,也能够更加方便的进行直接燃烧、与煤共燃、气化、热解或其他的热转化方式。与此同时,通过对污水处理厂产生的大量城市污泥进行焚烧处理是目前最有效的处理方式之一。本文主要研究不同成型因素对得到的污泥-生物质成型颗粒燃料能耗及性质的影响。主要考察的成型因素有成型压力(28-110MPa)、成型温度(30-150℃)、原料含水率(5-25%)、污泥混合比例(0-100%)和原料种类(杉木屑、樟木屑及稻草)等。本论文分析了挤压能耗、推出能耗、密度、膨胀率、Meyer强度和吸水性等,并进行机理推析。明确了各影响因素对成型能耗及颗粒性质的影响,确定了污泥与生物质协同成型的最优化条件。成型压强为物料在模具中的成型提供必要的动力,使松散的生物质变得致密均实,提高成型燃料的强度。随着压强的增大,成型颗粒的密度增大。颗粒的Meyer强度与压强没有显著关系,且与生物质种类也没有显著关系。成型温度是影响污泥与生物质协同成型的一个重要因素,污泥与生物质能够在90℃~150℃下成型得到密度大、强度高、膨胀率小的成型颗粒燃料,但温度升高意味着更多的能耗。水分在成型中起到粘结剂和润滑剂的作用,过高和过低的含水率都不利于成型,实验研究表明原料的混合含水率在10%~15%之间时,颗粒有较大的密度和Meyer强度,同时能耗、膨胀率降低。在与污泥协同成型时具有一定程度粘度特性的纤维素、半纤维素起到“钢筋”骨架的作用,污泥粒子填充其中,起到“钢筋水泥”作用,颗粒粘结效果好。因而,随着污泥比例的增大,污泥-生物质成型颗粒的密度、强度增大,吸水性降低。通过对不同成型因素下颗粒能耗及性质的考察与衡量,得出适宜的污泥-生物质成型条件为压强范围为55~83MPa,温度范围为110~130℃,含水率范围为10~15%,污泥比例为50%。成型颗粒燃料的燃烧过程具有四个特征阶段,分别是水分蒸发、挥发分燃烧、固定碳燃烧和燃尽阶段。随着污泥比例的增加,成型颗粒燃料挥发分失重速率降低,而固定碳燃烧速率升高。